I GRADI RIVESTITI CVD IN GRADO DI SUPERARE TUTTI GLI STANDARD ATTUALI NELLA LAVORAZIONE DI SUPER LEGHE RESISTENTI AL CALORE

I GRADI RIVESTITI CVD IN GRADO DI SUPERARE TUTTI GLI STANDARD ATTUALI NELLA LAVORAZIONE DI SUPER LEGHE RESISTENTI AL CALORE

RESISTENZA ALL'USURA MIGLIORATA

Adottando una tecnologia di rivestimento Al-Rich di nuova concezione, il rivestimento (Al,Ti)N con elevato contenuto di Al permette di raggiungere una durezza superficiale estrema, il che permette una resistenza all'ossidazione notevolmente migliorata, con conseguente eccellente resistenza all'usura.

ECCELLENTE RESISTENZA ALL'INCOLLAMENTO

Superficie liscia

RESISTENZA ALL'USURA SUPERIORE

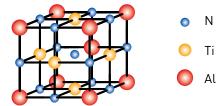
Rivestimento Al-Rich di recente sviluppo

ECCELLENTE RESISTENZA ALLA SCHEGGIATURA PER UNA LAVORAZIONE STABILE

Strato adesivo di nuova concezione

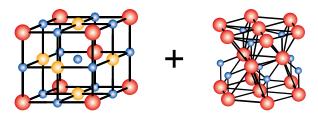
ECCELLENTE RESISTENZA ALLA DEFORMAZIONE PLASTICA

Substrato dedicato in carburo cementato estremamente duro

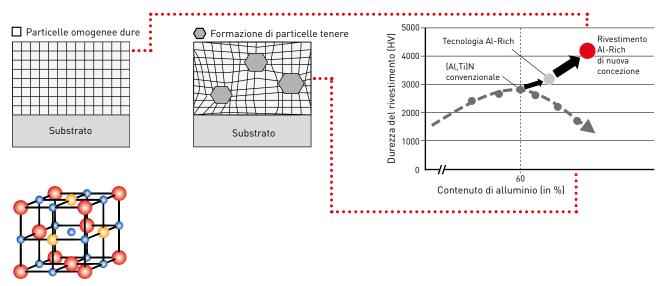


I GRADI RIVESTITI CVD IN GRADO DI SUPERARE TUTTI GLI STANDARD ATTUALI NELLA LAVORAZIONE DI SUPER LEGHE RESISTENTI AL CALORE

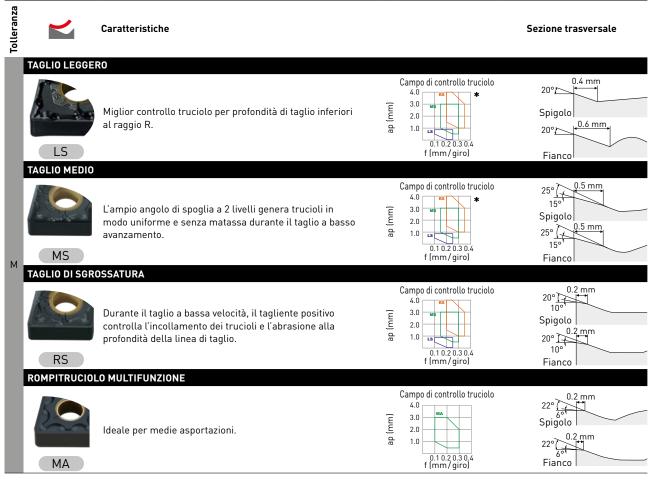
TECNOLOGIA DI RIVESTIMENTO COMPLETA CHE SUPERA GLI ATTUALI STANDARD DI DURATA DEGLI UTENSILI


Grazie al rivestimento Al-Rich di nuova concezione.

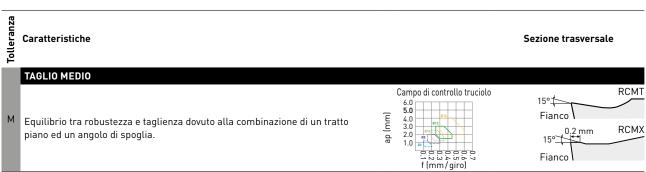
Il nitruro di alluminio e titanio (Al,Ti)N è un composto di alluminio e titanio ampiamente utilizzato come rivestimento per utensili da taglio grazie alle sue proprietà di estrema durezza e resistenza al calore.


La combinazione di atomi di dimensioni diverse crea una struttura cristallina eccezionalmente dura.

La durezza di (Al,Ti)N aumenta all'aumentare del contenuto di Al, ma con la tecnologia convenzionale, quando il contenuto di Al supera il 60 %, la struttura cristallina cambia e la durezza di (Al,Ti)N diminuisce.


Quando la percentuale di Al è superiore al 60 %, si forma una fase cristallina più tenace.

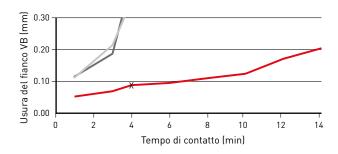
Utilizzando un nuovo processo basato su una tecnologia originale di Mitsubishi Materials, è stato sviluppato un nuovo rivestimento che non modifica la propria struttura cristallina anche quando tale contenuto viene aumentato. Ciò consente anche di ottenere un contenuto di Al più elevato e una maggiore durezza di (Al,Ti)N.


GAMMA ROMPITRUCIOLO

INSERTI NEGATIVI

ll campo di controllo del rompitruciolo è stato testato per un'evacuazione ottimale del truciolo durante il taglio di Inconel®718 con un inserto CNMG120408.

INSERTI POSITIVI



PRESTAZIONI DI TAGLIO

CONFRONTO DELLA RESISTENZA ALL'USURA NELLA LAVORAZIONE DI INCONEL®718

Presenta un'eccellente resistenza all'usura e una maggiore durata degli utensili.

Materiale	Inconel®718
Inserto	CNMG120412-00
Vc (m/min)	100
f (mm/giro)	0.3
ap (mm)	0.75
Modalità di taglio	Taglio ad umido

DOPO 4 MINUTI DI LAVORAZIONE

Rompitruciolo MS

Convenzionale A

CONFRONTO DELLA RESISTENZA ALL'USURA NELLA LAVORAZIONE DI INCONEL®718

Dimostra un'eccellente resistenza all'usura anche durante il taglio ad alta velocità di leghe resistenti al calore, migliorando così l'efficienza della lavorazione.

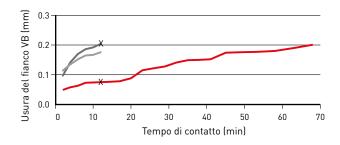
Materiale	Inconel®718
Inserto	CNMG120412-00
Vc (m/min)	150
f (mm/giro)	0.3
ap (mm)	0.75
Modalità di taglio	Taglio ad umido



4 MIN. DI LAVORAZIONE

MV9005 Rompitruciolo MS

1 MIN. DI LAVORAZIONE


Convenzionale A

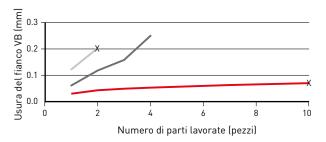
PRESTAZIONI DI TAGLIO

CONFRONTO DELLA RESISTENZA ALL'USURA NELLA LAVORAZIONE DI RENE 41

Presenta un'eccellente resistenza all'usura anche durante la lavorazione di componenti in lega resistente al calore utilizzati in ambienti con temperature superiori agli 800 °C.

Materiale	Rene 41 (lega a base Ni resistente al calore)
Inserto	CNMG120412-00
Vc (m/min)	30
f (mm/giro)	0.1
ap (mm)	0.5
Modalità di taglio	Taglio ad umido

DOPO 12 MINUTI DI LAVORAZIONE


Rompitruciolo MS

Convenzionale A

CONFRONTO NELLA LAVORAZIONE DI UNA SUPERLEGA A BASE NICHEL CONTENENTE COBALTO

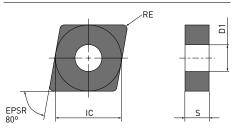
Presenta un'eccellente resistenza all'usura in un'ampia gamma di leghe resistenti al calore a base nichel.

Materiale	Superlega a base nichel contenente cobalto
Inserto	CNMG120412-00
Vc (m/min)	40
f (mm/giro)	0.15
ap (mm)	1.5
Modalità di taglio	Taglio ad umido

10 PEZZI

MV9005 Rompitruciolo MS

1 PEZZI


Convenzionale B

CNMG

INSERTI NEGATIVI (CON FORO)

Classe M

CNMG

	MV9005	IC	S	RE	D1
L	•	12.7	4.76	0.2	5.16
L	•	12.7	4.76	0.4	5.16
L	•	12.7	4.76	0.8	5.16
М	•	12.7	4.76	0.4	5.16
М	•	12.7	4.76	0.8	5.16
М	•	12.7	4.76	1.2	5.16
М	•	12.7	4.76	0.8	5.16
М	•	12.7	4.76	1.2	5.16
М	•	12.7	4.76	1.6	5.16
R	•	12.7	4.76	0.8	5.16
R	•	12.7	4.76	1.2	5.16
R	•	12.7	4.76	1.6	5.16
R	•	19.05	6.35	1.6	7.93
	M M M M M R R R	L	L	L ● 12.7 4.76 L ● 12.7 4.76 M ● 12.7 4.76 R ● 12.7 4.76	L ● 12.7 4.76 0.2 L ● 12.7 4.76 0.4 L ● 12.7 4.76 0.8 M ● 12.7 4.76 0.8 M ● 12.7 4.76 1.2 M ● 12.7 4.76 0.8 M ● 12.7 4.76 1.2 M ● 12.7 4.76 1.6 R ● 12.7 4.76 0.8 R ● 12.7 4.76 1.2 R ● 12.7 4.76 1.2 R ● 12.7 4.76 1.2 R ● 12.7 4.76 1.6



DNMG

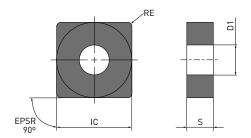
INSERTI NEGATIVI (CON FORO)

Classe M

DNMG

	_	RE
+	(\oplus)	
		1
EPSR	IC	c
EPSR 55°	- IC	5

Codice di ordinazione		MV9005	IC	S	RE	D1
DNMG150402-LS	L	•	12.7	4.76	0.2	5.16
DNMG150404-LS	L	•	12.7	4.76	0.4	5.16
DNMG150408-LS	L	•	12.7	4.76	0.8	5.16
DNMG150404-MS	М	•	12.7	4.76	0.4	5.16
DNMG150408-MS	М	•	12.7	4.76	0.8	5.16
DNMG150412-MS	М	•	12.7	4.76	1.2	5.16
DNMG150404-MA	М	•	12.7	4.76	0.4	5.16
DNMG150408-MA	М	•	12.7	4.76	0.8	5.16
DNMG150412-MA	М	•	12.7	4.76	1.2	5.16
						1/1



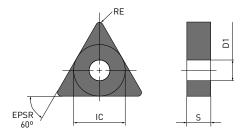
SNMG

INSERTI NEGATIVI (CON FORO)

Classe M

SNMG

Codice di ordinazione		MV9005	IC	S	RE	D1
SNMG120404-MS	М	•	12.7	4.76	0.4	5.16
SNMG120408-MS	М	•	12.7	4.76	0.8	5.16
SNMG120412-MS	М	•	12.7	4.76	1.2	5.16
SNMG120404-MA	М	•	12.7	4.76	0.4	5.16
SNMG120408-MA	М	•	12.7	4.76	0.8	5.16
SNMG120412-MA	М	•	12.7	4.76	1.2	5.16
SNMG120408-RS	R	•	12.7	4.76	0.8	5.16
SNMG120412-RS	R	•	12.7	4.76	1.2	5.16
SNMG120416-RS	R	•	12.7	4.76	1.6	5.16
						1/1



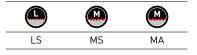
TNMG

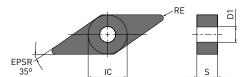
INSERTI NEGATIVI (CON FORO)

Classe M

TNMG

Codice di ordinazione		MV9005	IC	S	RE	D1
TNMG160402-LS	L	•	9.525	4.76	0.2	3.81
TNMG160404-LS	L	•	9.525	4.76	0.4	3.81
TNMG160408-LS	L	•	9.525	4.76	0.8	3.81
TNMG160404-MS	М	•	9.525	4.76	0.4	3.81
TNMG160408-MS	М	•	9.525	4.76	0.8	3.81
TNMG160412-MS	М	•	9.525	4.76	1.2	3.81
						1/1




VNMG

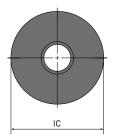
INSERTI NEGATIVI (CON FORO)

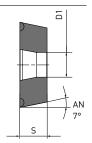
Classe M

VNMG

Codice di ordinazione		MV9005	IC	S	RE	D 1
VNMG160402-LS	L	•	9.525	4.76	0.2	3.81
VNMG160404-LS	L	•	9.525	4.76	0.4	3.81
VNMG160408-LS	L	•	9.525	4.76	0.8	3.81
VNMG160404-MS	М	•	9.525	4.76	0.4	3.81
VNMG160408-MS	M	•	9.525	4.76	0.8	3.81
VNMG160404-MA	M	•	9.525	4.76	0.4	3.81
VNMG160408-MA	М	•	9.525	4.76	0.8	3.81

/1




RCMT/ RCMX

INSERTI POSITIVI 7° (CON FORO)

Classe M

RCMT/RCMX

Standard

Standard

Codice di ordinazione		MV9005	IC	S	RE	D1
RCMT0602M0	М	•	6.0	2.38	_	2.8
RCMT0803M0	М	•	8.0	3.18	_	3.4
RCMT10T3M0	М	•	10.0	3.97	_	4.4
RCMT1204M0	М	•	12.0	4.76	_	4.4
RCMT1606M0	М	•	16.0	6.35	_	5.5
RCMX1003M0	М	•	10.0	3.18	_	3.6
RCMX1204M0	М	•	12.0	4.76	_	4.2
RCMX1606M0	М	•	16.0	6.35	_	5.2
						1/1

3 (Vc)

CONDIZIONI DI TAGLIO RACCOMANDATE

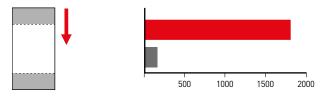
INSERTI NEGATIVI

	Materiale	Condizioni		Grado	~	Vc	f	ар
C	Leghe a base Ni resistenti al calore		L	MV9005	LS	50 – 110	0.10 - 0.25	0.2 - 0.8
(Inconel®718, Hastelloy®, WASPALO	(Inconel®718, Hastelloy®, WASPALOY®)		М	MV9005	MS	50 – 100	0.15 - 0.30	0.5 - 3.0
								1/1

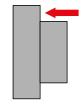
^{1.} Verificare le condizioni consigliate per ciascuna barra di alesatura poiché le condizioni di taglio per la lavorazione interna possono differire.

INSERTI POSITIVI

	Materiale	Condizioni		Grado	Vc	f	ар
S	Leghe a base Ni resistenti al calore (Inconel®718, Hastelloy®, WASPALOY®)		М	MV9005	40 – 80	0.25 - 0.45	1.5 – 3.0


1. Verificare le condizioni consigliate per ciascuna barra di alesatura poiché le condizioni di taglio per la lavorazione interna possono differire.

Condizioni di taglio: ●: Taglio stabile


ESEMPI DI UTILIZZO

Inserto	CNMG120412-MS		
Materiale	Superlega a base nichel contenente cobalto		
Particolare	Componente aerospaziale		
Applicazione	Sfacciatura		
Vc (m/min)	40		
f (mm/giro)	0.15		
ap (mm)	1.5		
Modalità di taglio	Taglio a umido		

L'usura da intaglio viene eliminata ed è possibile prolungare significativamente la durata dell'utensile.

Inserto	CNMG120412-MS		
Materiale	Inconel [®] 718		
Particolare	Componente aerospaziale		
Applicazione	Tornitura		
Vc (m/min)	MV9005 = 100 Convenzionale = 80		
f (mm/giro)	MV9005 = 0.30 Convenzionale = 0.25		
ap (mm)	0.15 - 0.35		
Modalità di taglio	Taglio a umido		
Risultati	Le condizioni di taglio migliorano l'efficienza di lavorazione del 50 % rispetto ai prodotti convenzionali. Inoltre, l'usura prematura viene eliminata e si ottiene una lavorazione stabile.		

Inserto	CNMG120412-MS	
Materiale	Inconel®718	
Particolare	Componente aerospaziale	
Applicazione	Tornitura interna	
Vc (m/min)	MV9005 = 100 Convenzionale = 80	
f (mm/giro)	MV9005 = 0.18 Convenzionale = 0.15	
ap (mm)	0.15 - 0.35	
Modalità di taglio	Taglio a umido	
Risultati	L'efficienza di lavorazione migliora del 50 % rispetto ai prodotti convenzionali. L'usura prematura viene eliminata anch in condizioni di taglio elevate, consentendo una lavorazione stabile.	

Gli esempi di cui sopra sono applicazioni di clienti reali e dunque possono non rispettare le condizioni raccomandate.

NOTE		

FILIALI EUROPEE

GERMANY

MMC HARTMETALL GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone + 49 2159 91890 . Fax + 49 2159 918966

Email admin@mmchq.de

MMC HARDMETAL U.K. LTD.

Mitsubishi House . Galena Close . Tamworth . Staffs. B77 4AS

Phone + 44 1827 312312

Email sales@mitsubishicarbide.co.uk

SPAIN

MITSUBISHI MATERIALS ESPAÑA, S.A. Calle Emperador 2 . 46136 Museros/Valencia

Phone + 34 96 1441711

Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone +33 1 69 35 53 53 . Fax +33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw Phone + 48 71335 1620 . Fax + 48 71335 1621

Email sales@mitsubishicarbide.com.pl

ITALY

MMC ITALIA S.R.L.

Viale Certosa 144 . 20156 Milano

Phone +39 0293 77031 . Fax +39 0293 589093

Email info@mmc-italia.it

TURKEY

MMC HARTMETALL GMBH ALMANYA - İZMİR MERKEZ ŞUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35530 Bayraklı/İzmir

Phone + 90 232 5015000 . Fax + 90 232 5015007

Email info@mmchg.com.tr

www.mmc-carbide.com

DISTRIBUITO DA: