
PUNTA MULTIFUNZIONALE PER CENTRINI E SMUSSI

MULTIFUNZIONALE

CARATTERISTICHE

Tipo a 60° e 90° con tagliente a doppia inclinazione

GEOMETRIA CON PUNTA ASSOTTIGLIATA

La geometria con punta assottigliata favorisce una evacuazione agevole dei trucioli e offre un'eccellente precisione di posizionamento. La geometria negativa della punta offre inoltre un'elevata resistenza del tagliente.

TAGLIENTE AFFILATO ED ALTA RESISTENZA ALLA SCHEGGIATURA

Un tagliente affilato e altamente resistente alla scheggiatura consente una lavorazione stabile e previene la formazione di bave.

Convenzionale

Tipo a 120° e 145° con tagliente ad una sola inclinazione

ECCELLENTE AFFILATURA E RESISTENZA ALLA SCHEGGIATURA

CUSPIDE A DOPPIA INCLINAZIONE (60°, 90°)

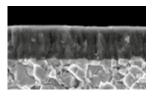
La doppia inclinazione della cuspide garantisce resistenza nella parte centrale per prevenire rotture improvvise.

(La parte centrale del fondo del foro non sarà a 60° / 90°)

Centro utensile ad alta resistenza

Più facile la rottura

Convenzionale


ANGOLO DI CUSPIDE SINGOLO (120°, 145°)

L'utilizzo di punte con cuspide a 145° permette di migliorare la precisione del foro nei processi successivi.

GRADO DI RIVESTIMENTO DP1020

Il grado DP1020 offre un'eccellente resistenza all'usura e un minore attrito, per una vita utensile incrementata e un più ampio campo di applicazioni.

Con rivestimento PVD a base di Al-Ti-Cr-N accumulato

Temperatura di ossidazione (°C)

Rivestimento convenzionale in PVD

Durezza (Hv)

PER TORNI AUTOMATICI

Steli compatibili con i mandrini ER.

MINI PUNTA DLE Ø 1.0 MM – Ø 2.5 MM SIG 90°

GEOMETRIA DI ASSOTTIGLIAMENTO DEL NOCCIOLO

Lo spazio per l'evacuazione dei trucioli nella parte centrale migliora le prestazioni della punta e garantisce un posizionamento particolarmente preciso dei fori.

CUSPIDE A DOPPIA INCLINAZIONE

La doppia inclinazione della cuspide garantisce resistenza nella parte centrale per prevenire cedimenti improvvisi. (Il fondo del foro non sarà a 90°.)

FORMA ESCLUSIVA DEL TAGLIENTE

Il grande angolo di spoglia e i taglienti affilati possono ridurre al minimo la formazione di bave.

Esempio di taglio su acciaio inossidabile AISI 304

DLE

Convenzionale

NUOVO GRADO "DP102A" ECCELLENTE SCORREVOLEZZA E RESISTENZA AL CALORE

Il grado di metallo duro DP102A rivestito in PVD presenta un'eccellente scorrevolezza e resistenza al calore e dimostra una straordinaria resistenza all'usura, soprattutto durante l'impiego con velocità di taglio basse e medie.

GEOMETRIA CON RASTREMAZIONE

Grazie alla geometria rastremata è possibile effettuare l'operazione di smussatura anche in profondità all'interno dei fori.

SERIE DI PUNTE MULTIFUNZIONALI 60° / 90°

DCON=3	3 <dcon<6< td=""><td>6<dc0n<10< td=""><td>10<dcon<16< td=""></dcon<16<></td></dc0n<10<></td></dcon<6<>	6 <dc0n<10< td=""><td>10<dcon<16< td=""></dcon<16<></td></dc0n<10<>	10 <dcon<16< td=""></dcon<16<>
0	0	0	0
_0 n1n	-N N12	-0 N15	-0 018

Codice di ordinazione	DP1020	DP102A	DC	SIG	LU	LCF	OAL	LH	S10	LF	PL	DCON	Fig.
DLE0300S030P060	•		3		2	9	45	_	_	42.9	2.1	3	2
DLE0400S040P060	•		4		2.7	12	50	_	_	47.2	2.8	4	2
DLE0500S050P060	*		5		3.4	14	60	_	_	56.5	3.5	5	2
DLE0600S060P060	•		6	- 60°	4	15	66	_	_	61.8	4.2	6	2
DLE0700S070P060	*		7	60	4.7	18	74		_	69.1	4.9	7	2
DLE0800S080P060	•		8	_	5.4	20	74	_	_	68.4	5.6	8	2
DLE1000S100P060	•		10		6.8	24	84	_	_	77	7	10	2
DLE1200S120P060	*		12		8.2	28	95	_	_	86.6	8.4	12	2
DLE0100S030P090		•	1		0.35	2	45	6.7	3.0	44.6	0.4	3	1
DLE0150S030P090		•	1.5		0.55	3	45	7.3	4.5	44.4	0.6	3	1
DLE0200S030P090		•	2		0.80	4	45	7.9	6.1	44.1	0.9	3	1
DLE0250S030P090		•	2.5		1.00	5	45	7.9	7.1	43.9	1.1	3	1
DLE0300S030P090	•		3		1.2	9	45	_	_	43.7	1.3	3	2
DLE0400S040P090	•		4		1.6	12	50	_	_	48.3	1.7	4	2
DLE0500S050P090	*		5	90°	2.0	14	60	_	_	57.9	2.1	5	2
DLE0600S060P090	•		6		2.4	15	66	_	_	63.4	2.6	6	2
DLE0700S070P090	*		7		2.8	18	74	_	_	71.0	3.0	7	2
DLE0800S080P090	•		8		3.2	20	74	_	_	70.6	3.4	8	2
DLE1000S100P090	•		10		4.1	24	84	_	_	79.7	4.3	10	2
DLE1200S120P090	*		12	_	4.9	28	95	_	_	89.9	5.1	12	2
DLE1600S160P090	*		16		6.6	35	113	_	_	106.2	6.8	16	2

A causa della doppia inclinazione della cuspide (a circa DC/4), il fondo del foro non avrà un angolo di 60°/90°.
 Non è inoltre possibile effettuare l'operazione di smussatura in questa parte dei taglienti.

^{2.} Il diametro del foro di centraggio deve essere inferiore al diametro della punta DC, e la lunghezza utilizzabile LU deve essere considerata come linea guida.

SERIE DI PUNTE MULTIFUNZIONALI 120° / 145°

DCON=3	3 <dcon<6< th=""><th>6<dc0n<10< th=""><th>10<dc0n<16< th=""></dc0n<16<></th></dc0n<10<></th></dcon<6<>	6 <dc0n<10< th=""><th>10<dc0n<16< th=""></dc0n<16<></th></dc0n<10<>	10 <dc0n<16< th=""></dc0n<16<>
0	0	0	0
-0.010	-0.012	-0.015	-0.018

Codice di ordinazione	DP1020	DC	SIG	LU	LCF	OAL	LF	PL	DCON
DLE0300S030P120	•	3		0.8	9	45	44.1	0.9	3
DLE0400S040P120	•	4	_	1.1	12	50	48.8	1.2	4
DLE0500S050P120	*	5		1.3	14	60	58.6	1.4	5
DLE0600S060P120	•	6	1200	1.5	15	66	64.3	1.7	6
DLE0700S070P120	*	7	– 120°	1.8	18	74	72	2	7
DLE0800S080P120	•	8	_	2.1	20	74	71.7	2.3	8
DLE1000S100P120	•	10		2.7	24	84	81.1	2.9	10
DLE1200S120P120	*	12	_	3.3	28	95	91.5	3.5	12
DLE0300S030P145	*	3		0.4	9	45	44.5	0.5	3
DLE0400S040P145	*	4		0.5	12	50	49.4	0.6	4
DLE0500S050P145	*	5		0.7	14	60	59.2	0.8	5
DLE0600S060P145	*	6	1/50	0.7	15	66	65.1	0.9	6
DLE0700S070P145	*	7	– 145°	0.9	18	74	72.9	1.1	7
DLE0800S080P145	*	8	_	1.1	20	74	72.7	1.3	8
DLE1000S100P145	•	10		1.4	24	84	82.4	1.6	10
DLE1200S120P145	•	12	_	1.7	28	95	93.1	1.9	12

^{1.} Il diametro del foro di centraggio deve essere inferiore al diametro della punta DC, e la lunghezza utilizzabile LU deve essere considerata come linea guida.

CONDIZIONI DI TAGLIO RACCOMANDATE

ANGOLO DI CUSPIDE 60°

Materiale	DC	n	f
	3	7900	0.05 (0.03-0.07)
	4	5900	0.05 (0.03-0.07)
	5	5000	0.06 (0.04-0.08)
Acciaio dolce (<180 HB)	6	4200	0.06 (0.04-0.08)
DIN C10E ecc.	7	3600	0.07 (0.04-0.09)
	8	3100	0.07 (0.04-0.09)
	10	2700	0.08 (0.04-0.10)
	12	2200	0.08 (0.04-0.10)
	3	6800	0.05 (0.03-0.07)
	4	5100	0.05 (0.03-0.07)
	5	4400	0.06 (0.04-0.08)
Acciaio al carbonio, Acciaio legato	6	3700	0.06 (0.04-0.08)
(180 - 280 HB) DIN Ck45, 41CrMo4 ecc.	7	3100	0.07 (0.04-0.09)
Birt oldad, 4 forthiod edg.	8	2700	0.07 (0.04-0.09)
	10	2300	0.08 (0.04-0.10)
	12	1900	0.08 (0.04-0.10)
	3	6300	0.04 (0.02-0.06)
	4	4700	0.04 (0.02–0.06)
	5	4100	0.05 (0.03–0.07)
Acciaio al carbonio, Acciaio legato	6	3400	0.05 (0.03-0.07)
(280 - 350 HB)	7	2900	0.05 (0.03-0.07)
DIN 40CrNiMoA ecc.	8	2500	0.05 (0.03-0.07)
	10	2200	0.06 (0.03-0.08)
	12	1800	0.06 (0.03-0.08)
	3	1500	0.03 (0.01–0.05)
	4	1100	0.03 (0.01–0.05)
	5	1200	0.04 (0.02–0.06)
		1000	0.04 (0.02-0.06)
Acciaio inossidabile austenitico (<200 HB) DIN X5CrNi189, X5CrNiMo1810 ecc.	6 7	900	
Bit Addition, Addition to to eec.		-	0.04 (0.02-0.06)
	8	790	0.04 (0.02-0.06)
	10	630	0.04 (0.02-0.06)
	12	530	0.04 (0.02-0.06)
	3	7900	0.05 (0.03-0.07)
	4	5900	0.05 (0.03-0.07)
	5	5000	0.06 (0.04-0.08)
Ghisa grigia (<350 MPa)	6	4200	0.06 (0.04-0.08)
DIN GG30 ecc.	7	3600	0.07 (0.04–0.09)
	8	3100	0.07 (0.04–0.09)
	10	2700	0.08 (0.04–0.10)
<u></u>	12	2200	0.08 (0.04-0.10)
	3	5800	0.05 (0.03-0.07)
	4	4300	0.05 (0.03-0.07)
	5	3800	0.06 (0.04-0.08)
Ghisa sferoidale (<450 MPa)	6	3100	0.06 (0.04-0.08)
DIN GGG40.3 ecc.	7	2700	0.06 (0.04-0.08)
	8	2300	0.06 (0.04-0.08)
	10	1900	0.07 (0.04-0.09)
	12	1500	0.07 (0.04-0.09)

- Quando si esegue la smussatura, assicurarsi che il diametro DC dell'utensile sia D <DC <2D.
 Quando si esegue la scanalatura a V e la smussatura dei bordi, ridurre le condizioni di taglio.
 Quando si esegue una centrinatura su superfici curve o inclinate, ridurre l'avanzamento.

ANGOLO DI CUSPIDE 90°, 120° E 145°

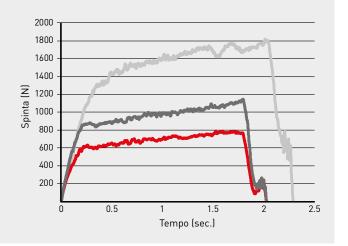
1 9900 0.02 (0.01-0.03)		Materiale	DC	n	f
Acciaio doice (+180 HB) DIN C 10F ecc. Acciaio doice (+180 HB) DIN C 10F ecc. 4 9500 0.04 1003-0.051 5 5000 0.07 1005-0.091 7 8600 0.07 1005-0.091 8 3100 0.08 1005-0.011 10 2700 0.07 1005-0.011 116 1700 0.08 1005-0.111 116 1700 0.12 10.10-0.111 116 1700 0.12 10.10-0.111 117 4500 0.02 1001-0.031 118 1700 0.02 1001-0.031 119 2 2000 0.07 1005-0.011 110 0.07 1005-0.011 110 0.07 1005-0.01			1	9500	0.02 (0.01–0.03)
Accisio dotce (+180 HB1 DIN C18E ecc. 4			1.5	9500	0.02 (0.01-0.03)
Accisio dotac (+180 HB) DIN C10E ecc. 4 5900 0.06 (0.04-0.08) 5 5000 0.07 (0.05-0.09) 7 3600 0.08 (0.05-0.10) 8 3100 0.08 (0.05-0.10) 10 2700 0.07 (0.05-0.07) 11 2200 0.07 (0.05-0.07) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.02 (0.05-0.10) 11 450 0.05 0.05 0.05 0.05 0.05 0.05 0.05			2	9500	0.04 (0.03-0.05)
Acciaio dolce 4 5900 0.06 0.04-0.08 5 5 5000 0.07 10.05-0.09 7 3.000 0.08 0.05-0.10 8 3100 0.08 0.05-0.10 10 2700 0.07 10.05-0.07 11 12 2200 0.07 10.05-0.07 12 2200 0.07 10.05-0.07 15 1700 0.12 10.00-0.07 16 1700 0.12 10.00-0.07 18 1 4500 0.02 10.01-0.03 1.5 74.00 0.02 10.01-0.03 2 7900 0.04 10.05-0.05 2 5 8200 0.04 10.05-0.05 2 5 8200 0.04 10.05-0.05 2 5 8200 0.04 10.05-0.05 2 5 8200 0.04 10.05-0.05 2 5 8200 0.04 10.05-0.05 2 5 8200 0.04 10.05-0.05 2 5 8200 0.04 10.05-0.05 2 5 8200 0.04 10.05-0.05 2 5 8200 0.05 10.05-0.05 2 5 8200 0.05 10.05-0.05 2 5 8200 0.06 10.05-0.05 3 6200 0.07 10.05-0.05 3 6200 <td></td> <td></td> <td>2.5</td> <td>9500</td> <td>0.04 (0.03-0.05)</td>			2.5	9500	0.04 (0.03-0.05)
Accisio al carbonio, Accisio legato 5 5000 0.077 (0.05-0.09)			3	7900	0.06 (0.04-0.08)
DIN C10E acc. 5 5000		A (400 UP)	4	5900	0.06 (0.04-0.08)
6			5	5000	0.07 (0.05-0.09)
8 3100 0.08 (0.05-0.101)			6	4200	0.07 (0.05-0.09)
10 2700 0.09 (0.05-0.11) 12 2200 0.09 (0.05-0.11) 12 2200 0.09 (0.05-0.11) 16 1700 0.12 (0.10-0.14) 16 1700 0.12 (0.10-0.13) 1.5 7400 0.02 (0.11-0.03) 1.5 7400 0.02 (0.11-0.03) 1.5 7400 0.02 (0.11-0.03) 1.5 7400 0.02 (0.11-0.03) 1.5 7400 0.02 (0.01-0.03) 1.5 7400 0.02 (0.01-0.03) 1.5 7400 0.02 (0.01-0.03) 1.5 7400 0.02 (0.01-0.03) 1.5 7400 0.02 (0.01-0.03) 1.5			7	3600	0.08 (0.05-0.10)
12 2200 0.09 (0.05-0.11)			8	3100	0.08 (0.05-0.10)
16			10	2700	0.09 (0.05–0.11)
1			12	2200	0.09 (0.05-0.11)
Name			16	1700	0.12 (0.10-0.14)
Acciaio al carbonio, Acciaio legato (180 - 280 HB)			1	6300	0.02 (0.01-0.03)
Part			1.5	7400	0.02 (0.01-0.03)
Acciaio al carbonio, Acciaio legato 100 10			2	7900	0.04 (0.03-0.05)
Acciaio al carbonio, Acciaio legato			2.5	8200	0.04 (0.03-0.05)
180 - 280 HB 5			3	6800	0.06 (0.04-0.08)
180 - 280 HB 180 - 280 HB		Acciaio al carbonio, Acciaio legato	4	5100	0.06 (0.04-0.08)
Reciaio al carbonio, Acciaio legato 280 - 300 30	Р	(180 - 280 HB)	5	4400	0.07 (0.05-0.09)
8 2700 0.08 (0.05-0.10) 10 2300 0.07 (0.05-0.11) 12 1900 0.07 (0.05-0.11) 12 1900 0.07 (0.05-0.11) 14 4700 0.02 (0.01-0.03) 1.5 6300 0.02 (0.01-0.03) 2 7100 0.04 (0.03-0.05) 2.5 7600 0.04 (0.03-0.05) 3 6300 0.05 (0.03-0.07) 2.5 7600 0.04 (0.03-0.05) 3 6300 0.05 (0.03-0.07) 280 - 350 HB		DIN Ck45, 41CrMo4 ecc.	6	3700	0.07 (0.05-0.09)
10			7	3100	0.08 (0.05-0.10)
12			8	2700	0.08 (0.05-0.10)
16			10	2300	0.09 (0.05-0.11)
1			12	1900	0.09 (0.05–0.11)
1.5 6.300 0.02 (0.01-0.03)			16	1500	0.12 (0.10-0.14)
Acciaio al carbonio, Acciaio legato (280 - 350 HB) DIN 40CrNiMoA ecc. 4			1	4700	0.02 (0.01–0.03)
Acciaio al carbonio, Acciaio legato (280 - 350 HB) 5 4100 0.05 [0.03 - 0.07] DIN 40CrNimoA ecc. 6 3400 0.06 [0.04 - 0.08] The properties of the properti			1.5	6300	0.02 (0.01–0.03)
Acciaio al carbonio, Acciaio legato [280 - 350 HB] DIN 40CrNiMoA ecc. 6 3400 0.06 [0.04-0.08] 7 2900 0.06 [0.04-0.08] 8 2500 0.06 [0.04-0.08] 10 2200 0.07 [0.04-0.09] 12 1800 0.07 [0.04-0.09] 12 1800 0.07 [0.04-0.09] 16 1400 0.08 [0.06-0.10] 1 6300 0.01 [0.05-0.015] 2 3100 0.04 [0.03-0.05] 2 3100 0.04 [0.03-0.05] 2 3100 0.04 [0.03-0.05] 2 15 2500 0.04 [0.03-0.05] 2 15 2500 0.04 [0.03-0.05] 2 1 100 0.04 [0.03-0.05] 3 1500 0.04 [0.03-0.05] 4 1100 0.04 [0.02-0.06] 4 1100 0.04 [0.02-0.06] 4 1100 0.04 [0.02-0.06] 6 1000 0.06 [0.04-0.08] 7 900 0.06 [0.04-0.08] 8 790 0.06 [0.04-0.08] 10 630 0.06 [0.04-0.08]			2	7100	0.04 (0.03-0.05)
Acciaio al carbonio, Acciaio legato [280 - 350 HB] DIN 40CrNiMoA ecc. 6 3400 0.06 (0.04-0.08) 7 2900 0.06 (0.04-0.08) 8 2500 0.06 (0.04-0.08) 10 2200 0.07 (0.04-0.09) 12 1800 0.07 (0.04-0.09) 16 1400 0.08 (0.06-0.10) 16 1400 0.08 (0.06-0.10) 16 1400 0.08 (0.06-0.10) 17 3100 0.01 (0.005-0.015) 18 2 3100 0.01 (0.005-0.015) 18 2 3100 0.04 (0.03-0.05) 18 2 3100 0.04 (0.03-0.05) 18 3 1500 0.04 (0.03-0.05) 3 1500 0.04 (0.02-0.06) 4 1100 0.08 (0.04-0.08) 10 0.04 (0.02-0.06) 4 1100 0.04 (0.02-0.06) 10 0.04 (0.03-0.05) 11 0.04 (0.03-0.05) 12 0.04 (0.03-0.05) 12 0.04 (0.03-0.05) 13 0.04 (0.03-0.05) 14 0.04 (0.03-0.05) 15 0.04 (0.03-0.05) 16 0.04 (0.03-0.05) 17 0.06 (0.04-0.08) 18 790 0.06 (0.04-0.08) 19 0.06 (0.04-0.08) 10 630 0.06 (0.04-0.08)			2.5	7600	0.04 (0.03-0.05)
1			3	6300	0.05 (0.03-0.07)
DIN 40CrNiMoA ecc. 6 3400 0.06 [0.04-0.08] 7 2900 0.06 [0.04-0.08] 8 2500 0.06 [0.04-0.08] 10 2200 0.07 [0.04-0.09] 12 1800 0.07 [0.04-0.09] 16 1400 0.08 [0.06-0.10] 1 6300 0.01 [0.005-0.015] 1 5 4200 0.01 [0.005-0.015] 2 3100 0.04 [0.03-0.05] 2 3100 0.04 [0.03-0.05] 2 3100 0.04 [0.03-0.05] 3 1500 0.04 [0.03-0.05] 3 1500 0.04 [0.02-0.06] 4 1100 0.04 [0.02-0.06] DIN X5CrNi189, X5CrNiMo1810 ecc. 6 1000 0.06 [0.04-0.08] 7 900 0.06 [0.04-0.08] 8 790 0.06 [0.04-0.08] 10 630 0.06 [0.04-0.08]		Acciaio al carbonio, Acciaio legato	4	4700	0.05 (0.03-0.07)
Acciaio inossidabile austenitico (<200 HB) DIN X5CrNi189, X5CrNiMo1810 ecc. Acciaio inossidabile austenitico (<200 HB) Acciaio inossidabile austenitico (<			5	4100	0.06 (0.04-0.08)
B 2500 0.06 [0.04-0.08]		DIN 4UCrNiMoA ecc.	6	3400	0.06 (0.04-0.08)
10			7	2900	0.06 (0.04-0.08)
12			8	2500	0.06 (0.04-0.08)
16			10	2200	0.07 (0.04-0.09)
M Acciaio inossidabile austenitico (<200 HB) DIN X5CrNi189, X5CrNiMo1810 ecc. 1 6300 0.01 (0.005-0.015) 1.5 4200 0.01 (0.005-0.015) 2 3100 0.04 (0.03-0.05) 3 1500 0.04 (0.02-0.06) 4 1100 0.04 (0.02-0.06) 5 1200 0.06 (0.04-0.08) 7 900 0.06 (0.04-0.08) 8 790 0.06 (0.04-0.08) 10 630 0.06 (0.04-0.08)			12	1800	0.07 (0.04-0.09)
M Acciaio inossidabile austenitico (<200 HB) DIN X5CrNi189, X5CrNiMo1810 ecc. M PARTINE MARCHINE MARC			16	1400	0.08 (0.06-0.10)
Acciaio inossidabile austenitico (<200 HB) DIN X5CrNi189, X5CrNiMo1810 ecc. M 7 900 0.04 [0.03-0.05] 1100 0.04 [0.02-0.06] 4 1100 0.04 [0.02-0.06] 5 1200 0.06 [0.04-0.08] 7 900 0.06 [0.04-0.08] 8 790 0.06 [0.04-0.08] 10 630 0.06 [0.04-0.08]			1	6300	0.01 (0.005-0.015)
Acciaio inossidabile austenitico (<200 HB) DIN X5CrNi189, X5CrNiMo1810 ecc. M 7 900 0.04 [0.02-0.06] 8 790 0.06 [0.04-0.08] 10 630 0.06 [0.04-0.08] 10 630 0.06 [0.04-0.08]			1.5	4200	0.01 (0.005–0.015)
Acciaio inossidabile austenitico (<200 HB) DIN X5CrNi189, X5CrNiMo1810 ecc. M 7 900 0.06 [0.04-0.08] 8 790 0.06 [0.04-0.08] 10 630 0.06 [0.04-0.08] 12 530 0.06 [0.04-0.08]			2	3100	0.04 (0.03-0.05)
Acciaio inossidabile austenitico (<200 HB) DIN X5CrNi189, X5CrNiMo1810 ecc. 4 1100 0.04 (0.02-0.06) 5 1200 0.06 (0.04-0.08) 6 1000 0.06 (0.04-0.08) 7 900 0.06 (0.04-0.08) 8 790 0.06 (0.04-0.08) 10 630 0.06 (0.04-0.08) 12 530 0.06 (0.04-0.08)			2.5	2500	0.04 (0.03-0.05)
Acciaio inossidabile austenitico (<200 HB) DIN X5CrNi189, X5CrNiMo1810 ecc. 5 1200 0.06 [0.04-0.08] 6 1000 0.06 [0.04-0.08] 7 900 0.06 [0.04-0.08] 8 790 0.06 [0.04-0.08] 10 630 0.06 [0.04-0.08] 12 530 0.06 [0.04-0.08]			3	1500	0.04 (0.02-0.06)
M PIN X5CrNi189, X5CrNiMo1810 ecc. 5 1200 0.06 [0.04-0.08] M 7 900 0.06 [0.04-0.08] 8 790 0.06 [0.04-0.08] 10 630 0.06 [0.04-0.08] 12 530 0.06 [0.04-0.08]		Acciain innesidabile austonitics (~200 UD)	4	1100	0.04 (0.02-0.06)
M 6 1000 0.06 [0.04-0.08] 7 900 0.06 [0.04-0.08] 8 790 0.06 [0.04-0.08] 10 630 0.06 [0.04-0.08] 12 530 0.06 [0.04-0.08]			5	1200	0.06 (0.04-0.08)
8 790 0.06 (0.04-0.08) 10 630 0.06 (0.04-0.08) 12 530 0.06 (0.04-0.08)			6	1000	0.06 (0.04–0.08)
10 630 0.06 [0.04-0.08] 12 530 0.06 [0.04-0.08]	М		7	900	0.06 (0.04-0.08)
12 530 0.06 (0.04-0.08)			8	790	0.06 (0.04-0.08)
			10	630	0.06 (0.04-0.08)
16 390 0.08 (0.06–0.10)			12	530	0.06 (0.04-0.08)
			16	390	0.08 (0.06-0.10)

ANGOLO DI CUSPIDE 90°, 120° E 145°

Materiale	DC	n	f
	1	9500	0.02 (0.01-0.03)
	1.5	9500	0.02 (0.01–0.03)
	2	9500	0.04 (0.03-0.05)
	2.5	9500	0.04 (0.03-0.05)
	3	7900	0.06 (0.04-0.08)
	4	5900	0.06 (0.04-0.08)
Ghisa grigia (<350 MPa) DIN GG30 ecc.	5	5000	0.07 (0.05-0.09)
DIN 0030 ecc.	6	4200	0.07 (0.05–0.09)
	7	3600	0.08 (0.05-0.10)
	8	3100	0.08 (0.05-0.10)
	10	2700	0.09 (0.05-0.11)
	12	2200	0.09 (0.05-0.11)
к	16	1700	0.12 (0.10-0.14)
	1	3100	0.02 (0.01-0.03)
	1.5	5300	0.02 (0.01-0.03)
	2	6300	0.04 (0.03-0.05)
	2.5	7000	0.04 (0.03-0.05)
	3	5800	0.06 (0.04-0.08)
	4	4300	0.06 (0.04-0.08)
Ghisa sferoidale (<450 MPa) DIN GGG40.3 ecc.	5	3800	0.07 (0.05–0.09)
BIIV 00040.0 ecc.	6	3100	0.07 (0.05–0.09)
	7	2700	0.07 (0.05–0.09)
	8	2300	0.07 (0.05–0.09)
	10	1900	0.08 (0.05-0.10)
	12	1500	0.08 (0.05-0.10)
	16	1100	0.11 (0.09-0.13)

- 1. Quando si esegue la smussatura, assicurarsi che il diametro DC dell'utensile sia D < DC < 2D.
- Quando si esegue la scanalatura a V e la smussatura dei bordi, ridurre le condizioni di taglio.
 Quando si esegue una centrinatura su superfici curve o inclinate, ridurre l'avanzamento.

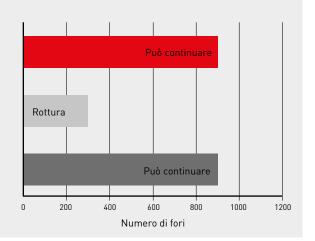
MANUALE D'USO PER PUNTE DLE


Serraggio della punta	Lunghezza della punta	Precisione della concentricità	Pezzo da lavorare sottile	Metodo di refrigerazione
	NG		In caso di flessione OK Sostenere il pezzo da lavorare	
I mandrini portapinze trattengono la punta in modo sicuro.	Non bloccare sui taglienti.	Concentricità < 0.03 mm		L'alimentazione del refrigerante all'estremità e al centro è ideale.

PRESTAZIONI DI TAGLIO

CONFRONTO DURANTE OPERAZIONE DI CENTRINATURA

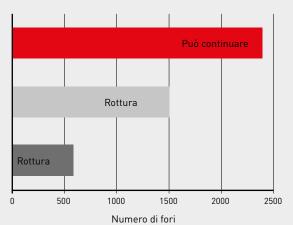
Minore forza di spinta richiesta rispetto ai prodotti convenzionali.


Materiale	DIN Ck45
Utensile	DLE1200S120P090 Ø12
Vc (m/min)	60
f (mm/giro)	0.06
Modalità di taglio	Refrigerante esterno per taglio a umido (emulsione priva di cloro)
Macchina	Centro di lavoro verticale

CONFRONTO VITA UTENSILE IN FORATURA DI ACCIAIO INOSSIDABILE (ANGOLO DI CUSPIDE 120°)

La punta DLE produce meno vibrazioni e migliora la finitura superficiale rispetto ai prodotti convenzionali.

Materiale	X5CrNi18-10 (1.43.01)
Utensile	DLE0600S060P120 Ø6
Vc (m/min)	20
fz (mm/giro)	0.06
Obiettivo di profondità del foro per diam. foro (mm)	Ø 5.5
Modalità di taglio	Refrigerante esterno per taglio a umido (refrigerante non idrosolubile)
Macchina	Centro di lavoro verticale



CONFRONTO VITA UTENSILE IN OPERAZIONE DI CENTRINATURA SU ACCIAIO INOSSIDABILE AISI 304: ANGOLO DI CUSPIDE 90° (Ø 2 MM)

Nella lavorazione di acciaio inossidabile, le punte DLE possono garantire una maggiore vita utensile, con una straordinaria resistenza al calore e all'usura dei taglienti.

Materiale	DIN X5CrNi189
Utensile	DLE0200S030P090
Vc (m/min)	30
fz (mm/giro)	0.045
Modalità di taglio	Refrigerante esterno per taglio a umido (refrigerante non idrosolubile)
Macchina	Centro di lavoro verticale

ESEMPIO DI APPLICAZIONE

Utensile	DLE0400S040P090	
Materiale da lavorare (parte di macchinario)	DIN C10E	
Vc (m/min)	30	
f (mm/giro)	0.045	
Diametro foro guida (mm)	Ø 3	Centrinatura e smussatura
Modalità di taglio	Refrigerante esterno per taglio a umido (emulsione priva di cloro)	oemimatara e simassatara
Macchina	Tornio NC, utensile in rotazione	Le bave sono eliminate
Risultati	Rispetto ai prodotti convenzionali, le punte DLE producono una maggiore durata della vita utile e una quantità di gran lunga inferiore di bave.	

Utensile	DLE0200S030P090		
Materiale da lavorare (parte di macchinario)	DIN X5CrNi189 (parti di motore)		
Vc (m/min)	38		
z (mm/giro)	0.02		
Diametro foro guida (mm)	Ø 6	Centrinatura di un for	o da Ø 0.6 mm
Modalità di taglio	Refrigerante esterno per taglio a umido (emulsione priva di cloro)		
Macchina	Tornio NC, utensile in rotazione		
Risultati		Confronto tra le superfi dopo la centrinatura	ci di spoglia
	Rispetto ai prodotti convenzionali, le punte	60.000 fori	30.000 fori
	DLE producono una maggiore durata della vita utile e una quantità di gran lunga inferiore di bave.		
		DLE	Convenzionale
			Rottura

Utensile	DLE0300S030P090		
Materiale da lavorare (parte di motore)	DIN X12CrNiS188		
Vc (m/min)	25		
fz (mm/giro)	0.04		
Diametro foro guida (mm)	Ø 2.0		
Modalità di taglio	Refrigerante esterno per taglio a umido (non idrosolubile), superficie curva	Centrinatura e smussatura	
Macchina	Tornio automatico CNC	Dopo 60 fori	Dopo 1 foro
Risultati	I prodotti convenzionali generavano bave durante l'esecuzione del primo foro. La punta DLE ha eseguito 60 fori senza alcun danno apprezzabile o formazione di bave, producendo un'eccellente finitura superficiale.		

SELEZIONE DEL DIAMETRO DELLA PUNTA

PER LA SMUSSATURA

Prendendo come riferimento il diametro del foro guida D, selezionare il diametro della punta (DC) entro l'intervallo D < DC < 2D.

Se DC è uguale o superiore di due volte al diametro del foro (2D)

Se il diametro DC della punta è troppo grande rispetto al diametro D del foro guida, non sarà possibile eseguire l'operazione di smusso.

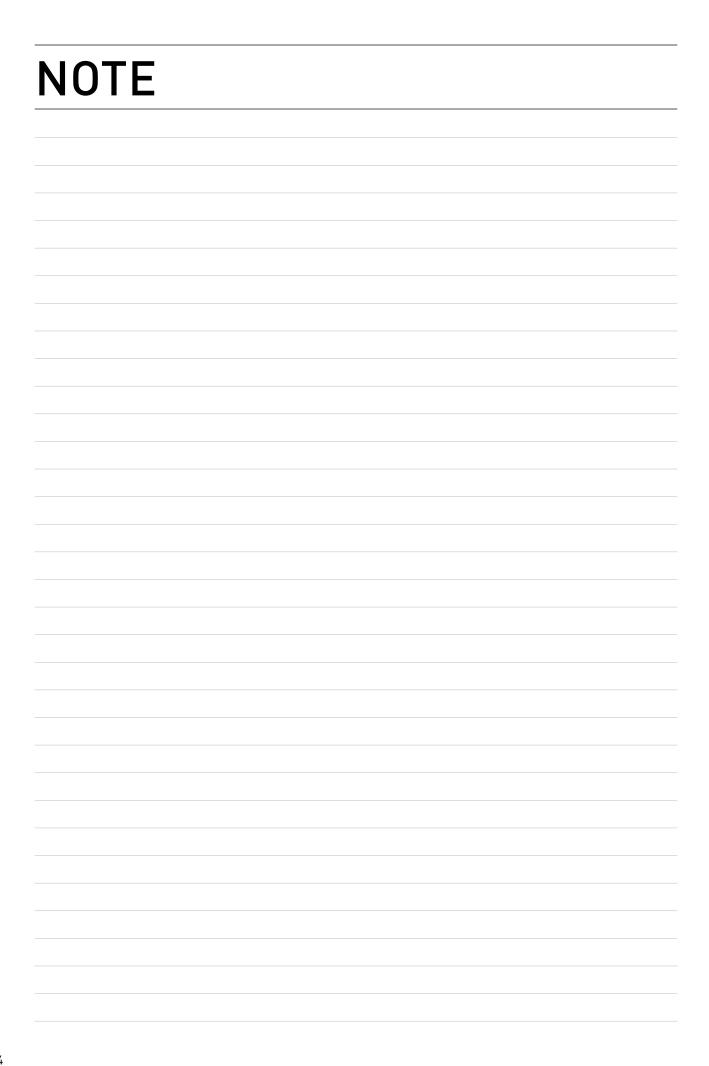
Se il diametro DC della punta è uguale o inferiore a D

La smussatura non può essere eseguita se il diametro DC è uguale al diametro D del foro guida.

Se il diametro D del foro guida è pari a 5 mm, il diametro DC della punta deve essere maggiore di 6 mm ma inferiore a 10 mm.

PER LA FORATURA DI CENTRAGGIO

Il centraggio o centrinatura non può essere eseguito se il diametro DC della punta è uguale al diametro D del foro guida.


Fare riferimento alla lunghezza utilizzabile LU (pagina 7) come linea guida.

Poichè nelle punte a 60° e 90° le cuspidi hanno una doppia inclinazione (a circa un quarto del diametro), il fondo del foro non avrà un angolo a 60° o 90°.

L'esecuzione di una centrinatura a 145° permette di incrementare la precisione del foro, riducendo il tallonamento della punta nel successivo processo ove si utilizzino punte a 143° o meno.

PROCESSO SUCCESSIVO

NOTE		

NOTE	

MITSUBISHI MATERIALS CORPORATION

GERMANY

MMC HARTMETALL GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone + 49 2159 91890 . Fax + 49 2159 918966

Email admin@mmchq.de

MMC HARDMETAL U.K. LTD.

Mitsubishi House . Galena Close . Tamworth . Staffs. B77 4AS

Phone + 44 1827 312312 . Fax + 44 1827 312314

Fmail sales@mitsubishicarbide.co.uk

SPAIN

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2 . 46136 Museros/Valencia Phone +34 96 1441711 . Fax +34 96 1443786

Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone +33 1 69 35 53 53 . Fax +33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw

Phone + 48 71335 1620 . Fax + 48 71335 1621 Email sales@mitsubishicarbide.com.pl

RUSSIA

MMC HARDMETAL 000 LTD.

Electrozavodskaya St. 24 . build. 3 . Moscow . 107023

Phone + 7 495 725 58 85 . Fax + 7 495 981 39 79

Email info@mmc-carbide.ru

MMC ITALIA S.R.L.

Viale Certosa 144 . 20156 Milano

Phone +39 0293 77031 . Fax +39 0293 589093

info@mmc-italia.it Email

TURKEY

MMC HARTMETALL GMBH ALMANYA - İZMİR MERKEZ ŞUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35580 Bayraklı/İzmir

Phone + 90 232 5015000 . Fax + 90 232 5015007

Email info@mmchg.com.tr

www.mitsubishicarbide.com | www.mmc-hardmetal.com

DISTRIBUITO DA:

Codice ordinazione: B223I Pubblicato: 2021.04 (0), stampato in Germania