VFX FÜR DIE HOCHEFFIZIENTE BEARBEITUNG VON TITANLEGIERUNGEN

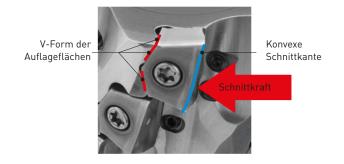
DIAEDGE

AMITSUBISHI MATERIALS

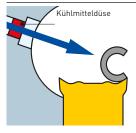
VFX5/6

DER VFX-FRÄSER ÜBERZEUGT DURCH OPTIMALE SPANABFUHR, HOHE ZUVERLÄSSIGKEIT UND INNOVATIVE KÜHLMITTELZUFUHR

NEUES DESIGN FÜR MAXIMALE WERKZEUGSTABILITÄT


Die vertikale Ausrichtung der WSP gewährleistet, dass die Fräskräfte ideal absorbiert werden und dadurch eine hohe Steifigkeit des Werkzeugs gewährleistet wird.

VERSTÄRKTER WSP-SPANNMECHANISMUS


Die WSP-Auflagefläche ist in radialer Richtung des Werkzeugs kurvenförmig und auf der Rotationsachse V-förmig, so dass die Schnittkräfte gleichmäßig aus allen Richtungen aufgenommen werden können.

KONVEXE SCHNEIDKANTE FÜR GERINGEN SCHNITTWIDERSTAND

Das Design der Schneidkante wurde so ausgelegt, dass ein möglichst geringer Schnittwiderstand und eine gute Spanabfuhr gewährleistet werden.

BESSERE SPANABFÜHRUNG DURCH NEUE KÜHLUNG

Kühlmitteleinspritzposition

Das Kühlmittel wird intern direkt zur Schneidkante und dem Span geführt, so dass es direkt auf den Span trifft. Dies forciert die Spanabführung und verhindert Spanverschweißung mit der Wendeschneidplatte.

AUSWECHSELBARE KÜHLMITTELDÜSE

Eine austauschbare Düse wird zur internen Kühlung eingesetzt (Bohrungsdurchmesser der mitgelieferten Standarddüse: ϕ 0,8). Der Kühlmitteldruck kann durch Düsen mit kleinerem oder größerem Durchmesser angepasst werden. Düsen mit anderen Durchmessern stehen als Zubehör zur Verfügung.

WENDESCHNEIDPLATTEN

LS MS HS

Exzellente Spanabfuhr und stabile Schneidkante. Für eine hocheffiziente Zerspanung bei kleinen seitlichen Schnittzustellungen.

Für einen breiten Anwendungsbereich. Der Allrounder für wechselnde Schnittdaten und unterschiedliche Anforderungen.

Erzeugt kompakte Späne ohne den Schnittwiderstand zu erhöhen. Für eine exzellente Leistung bei großen seitlichen Schnittzustellungen und beim Nutenfräsen.

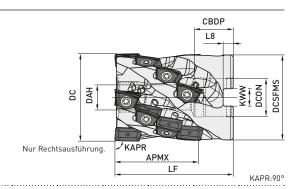
***************************************	Sorte			Schnittzustellu		
LS	MP9130 NEW	•				
MS	MP9030 /MP9130 NEW					
HS	MP9030 /MP9130 NEW					
•••••		0.1D	0.3D	0.5D	0.7D	0.9D

SORTE FÜR ALLGEMEINE ANWENDUNGEN MP9030

WEITERENTWICKELTE SORTE MP9130 NEW

MP9030 nutzt eine Beschichtung auf Basis eines Ti-Verbunds mit exzellenter Adhäsionund Bruchfestigkeit bei der Bearbeitung von Titanlegierungen. Das Hartmetallsubstrat hat ebenfalls eine hervorragende Verschleiß- und Bruchfestigkeit, ideal zum Fräsen schwer zu zerspanender Werkstoffe. Ein neues, verbessertes, sehr feines Hartmetallsubstrat sorgt für verstärkte Zähigkeit bei gleicher Härte.

Die Al-Ti-Cr-N-Beschichtung gewährleistet optimale Hitze- und Verschleißfestigkeit. Die Kombination dieser Eigenschaften verleiht dem Werkzeug eine exzellente Bruchfestigkeit und einen niedrigen Reibwert mit herausragender Verschleißfestigkeit bei der Bearbeitung von Titanlegierungen.


NEU ENTWICKELTER VFX5 FRÄSER MIT 3-SPANNUTEN

Bei Anwendungen mit hohem Spanaufkommen, wie beim Nutenfräsen, ist die Spanabfuhr sehr wichtig und kann, wenn sie nicht effektiv ist, zu Ausbrüchen an der WSP führen. Um dieses Problem zu lösen, wurde ein 3-schneidiger Fräser mit großen Spankammern und zusätzlichen sekundären Spankammern entwickelt. Durch die Verwendung des neuen LS-Spanbrechers in Verbindung mit dem 3-schneidigen Fräser kann nun eine maximale Performance erzielt werden.

S

WALZENSTIRNFRÄSER FÜR FRÄSERDORN-AUFNAHME

Bestellnummer	R	ZEFP	Zahnezahl	DC	LF	DCON	CBDP	DAH	DCSFMS	KWW	L8	АРМХ	WT [*] (kg)
VFX5-040A03A026R	•	3	6	40	50	16	21	8.5	38.2	8.4	5.6	26	0.3
VFX5-040A03A038R	•	3	9	40	60	16	21	8.5	38.2	8.4	5.6	38	0.4
VFX5-050X03A026R	•	3	6	50	50	27	23	12.5	48.2	12.4	7.0	26	0.4
VFX5-050X03A038R	•	3	9	50	60	27	23	12.5	48.2	12.4	7.0	38	0.5
VFX5-050A04A026R	•	4	8	50	50	22	21	10.5	48.2	10.4	6.3	26	0.5
VFX5-050A04A038R	•	4	12	50	60	22	21	10.5	48.2	10.4	6.3	38	0.6
VFX5-050X04A038R	•	4	12	50	60	27	23	12.5	48.2	12.4	7.0	38	0.5
VFX5-050A04A050R	•	4	16	50	70	22	21	10.5	48.2	10.4	6.3	50	0.7
VFX5-063A05A026R	•	5	10	63	60	27	28	12.5	61	12.4	7.0	26	1.0
VFX5-063A05A063R	•	5	25	63	85	27	28	12.5	61	12.4	7.0	63	1.4
VFX5-080A06A075R	•	6	36	80	100	32	28	16.5	77.3	14.4	8.0	75	2.8

* WT : Werkzeuggewicht

ERSATZTEILE

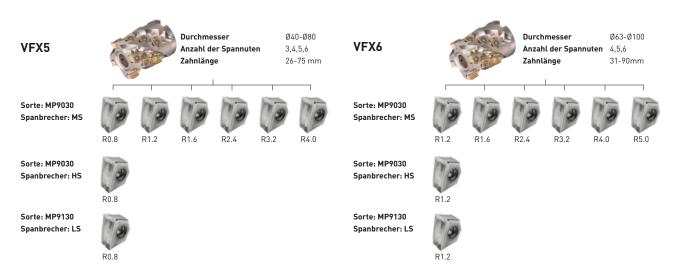
		*2		D		*3	∕		Anzahl d. W	SP
Bestellnummer							4/		Kopfseitige Schneidkante	Umfangs- *1 schneide
	Spannschraube	Anzahl	Dichtung	Schlüssel	Kühlmittel- Schraube	Anzahl	Kupferpaste	Schraube	XNMU1607 OR-OO	XNMU1607 08R-
VFX5-040A03A026R	TS352	6	W8-S1	TKY10D	HSD04004H08	9	MK1KS	HSC08040	3	3
VFX5-040A03A038R	TS352	9	W8-S1	TKY10D	HSD04004H08	12	MK1KS	HSC08050	3	6
VFX5-050X03A026R	TS352	6	W12-S1	TKY10D	HSD04004H08	9	MK1KS	HSC12035	3	3
VFX5-050X03A038R	TS352	9	W12-S1	TKY10D	HSD04004H08	12	MK1KS	HSC12045	3	6
VFX5-050A04A026R	TS352	8	W10-S1	TKY10D	HSD04004H08	12	MK1KS	HSC10035	4	4
VFX5-050A04A038R	TS352	12	W10-S1	TKY10D	HSD04004H08	16	MK1KS	HSC10045	4	8
VFX5-050X04A038R	TS352	12	W12-S1	TKY10D	HSD04004H08	16	MK1KS	HSC12045	4	8
VFX5-050A04A050R	TS352	16	W10-S1	TKY10D	HSD04004H08	20	MK1KS	HSC10055	4	12
VFX5-063A05A026R	TS352	10	W12-S1	TKY10D	HSD04004H08	15	MK1KS	HSC12045	5	5
VFX5-063A05A063R	TS352	25	W12-S1	TKY10D	HSD04004H08	30	MK1KS	HSC12070	5	20
VFX5-080A06A075R	TS352	36	W16-S1	TKY10D	HSD04004H08	42	MK1KS	HSC16080	6	30

- *1 Für die Umfangsschneiden sind nur WSP mit Eckenradius R0,8 mm verwendbar.
- *2 Spannmoment (N m) : TS352=2.5
- *3 Es stehen Schrauben mit Kühldüsen in unterschiedlichen Durchmessern zum Einstellen des Kühlmitteldrucks zur Verfügung. Wählen Sie die für Ihre Anwendung passenden Düsen aus, um den Kühlmitteldruck und die Zufuhrmenge zu steuern.

	<1Mpa (<20 l/min.)	←Standard→	>5Mpa (>30 l/min.)	>7Mpa (>50 l/min.)
Düsengröße	Ø0.6mm	Ø0.8mm	Ø1.2mm	Ø1.6mm
Bestellnummer	HSD04004H06	HSD04004H08	HSD04004H12	HSD04004H16
		• • • • • • • • • • • • • • • • • • • •		

* Spannmoment (N • m) : HSD04004H ==1.5

- 1. Bestellnummer für die Schraube ohne Kühlmittelzufuhr lautet HSS04004.
- 2. Beachten Sie bei WSP mit einem Eckenradius von R3,2 mm oder größer, dass das Maß LF zunimmt. Eckenradius R3,2 mm: LF + 0,7 mm Eckenradius R4,0 mm: LF + 1,5 mm



WSP

Bestellnummer	MP9030 Naw MP9130	L	LE	W1	INSL	s	BS	RE	Abbildung
MS	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		•••••••	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
XNMU160708R-MS	• •	16.0	14.0	7.0	11.1	6.5	1.0	0.8	
XNMU160712R-MS	• •	16.0	14.0	7.0	11.1	6.5	1.0	1.2	
XNMU160716R-MS	• •	16.0	14.0	7.0	11.1	6.5	1.0	1.6	
XNMU160724R-MS	• •	16.0	14.0	7.0	11.1	6.5	1.0	2.4	
XNMU160732R-MS	• •	17.3	14.7	7.0	11.1	6.5		3.2	
XNMU160740R-MS	• •	18.9	15.5	7.0	11.1	6.5		4.0	Allgemeine Anwendung
HS					• • • • • • • • • • • • • • • • • • • •				. L
XNMU160708R-HS	• •	16.0	14.0	7.0	11.1	6.5	1.0	0.8	
LS		.			• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·		Verstärkte Schneide
XNMU160708R-LS	•	16.0	14.0	7.0	11.1	6.5	1.0	0.8	

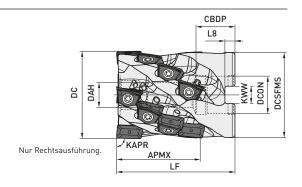
Scharfe Schneide

KOMBINATION AUS HALTER UND WSP MIT ECKENRADIUS

^{*} Es kann nur die Stirnschneide ausgetauscht werden. Bitte verwenden Sie für die Umfangsschneiden R1,2 für VFX6 und R0,8 für VFX5.

^{*} Beachten Sie bei WSP mit einem Eckenradius von R3,2 mm oder größer, dass das Maß LF zunimmt. Eckenradius R3,2 mm: LF + 0,7 mm Eckenradius R4,0 mm: LF + 1,5 mm

SCHNITTDATENEMPFEHLUNGEN


Material	DC (mm)	ZEFP	Empfohlene WSP	Vc (m/min)	n (min ⁻¹)	APMX (mm)	ae (mm)	fz (mm/Z.)	Vf (mm/min)	Q (cm3/min)	Pc (kW)	Berechnetes Drehmoment (Nm)	TL (%
		3	LS	40	318	38	40	0.10	95	145	6.5	194	40
	Ø 40	3	MS	50	398	38	24	0.10	119	109	4.5	109	60
	Ø 40	3	MS	60	477	38	16	0.10	143	87	3.5	69	80
		3	HS	60	477	38	8	0.12	172	52	2.3	45	100
		3	LS	40	255	38	50	0.10	76	145	6.5	242	40
	Ø 50	4	MS	50	318	50	30	0.10	127	191	7.9	237	60
	Ø 50	4	MS	60	382	50	20	0.10	153	153	6.0	151	80
Titanlegierungen		4	HS	60	382	50	10	0.12	183	92	3.9	98	100
(TiAl4V)		5	LS	40	202	60	63	0.10	101	382	16.8	793	4(
	a	5	MS	50	253	60	38	0.10	126	286	11.8	447	60
	Ø 63	5	MS	60	303	60	25	0.10	152	229	9.0	285	80
		5	HS	60	303	60	13	0.12	182	138	5.9	185	100
•		6	LS	40	159	75	80	0.10	95	573	25.0	1500	40
		6	MS	50	199	75	48	0.10	119	430	17.6	846	61
	Ø 80	6	MS	60	239	75	32	0.10	143	344	13.5	539	8
		6	HS	60	239	75	16	0.12	172	206	8.7	350	100
••••••••••		3	LS	25	199	38	40	0.08	48	73	3.4	161	30
		3	MS	25	199	38	24	0.08	48	44	1.9	92	5
	Ø 40	3	MS	30	239	38	16	0.10	72	44	1.8	74	70
		3	HS	30	239	38	8	0.10	72	22	1.0	41	91
•		4	LS	25	159	50	50	0.08	51	127	5.8	350	31
		4	MS	25	159	50	30	0.08	51	76	3.4	201	5
	Ø 50	4	MS	30	191	50	20	0.10	76	76	3.2	160	70
Titanlegierungen		4	HS	30	191	50	10	0.10	76	38	1.8	89	90
(Ti5Al5V5Mo3Cr)		5	LS	25	126	60	63	0.08	51	191	8.7	658	30
	_	5	MS	25	126	60	38	0.08	51	115	5.0	378	5
	Ø 63	5	MS	30	152	60	25	0.10	76	115	4.8	301	70
		5	HS	30	152	60	13	0.10	76	57	2.6	167	9(
•		6	LS	25	99	75	80	0.08	48	286	13.0	1246	30
		6	MS	25	99	75	48	0.08	48	172	7.5	716	5
	Ø 80	6	MS	30	119	75	32	0.10	72	172	7.1	570	70
		6	HS	30	119	75	16	0.10	72	86	3.9	316	90

Bitte beachten Sie, dass die Bearbeitungsleistung von den Bedingungen wie Steifheit der Maschine, Steifheit der Werkstückfixierung, Druck und Durchflussmenge der Kühlmittelversorgung usw. abhängt.
 Eine interne Kühlung wird empfohlen. Bitte verwenden Sie eine Aufnahme mit interner Kühlmittelzufuhr. Eine zusätzliche externe Kühlung erhöht die Effektivität.

WALZENSTIRNFRÄSER FÜR FRÄSERDORN-AUFNAHME

KAPR:90°

Bestellnummer	R	ZEFP	Zahnezahl	DC	LF	DCON	CBDP	DAH	DCSFMS	KWW	L8	АРМХ	WT* (kg)
VFX6-063A04A031R	•	4	8	63	60	27	28	12.5	61	12.4	7	31	0.9
VFX6-063A04A060R	•	4	16	63	85	27	28	12.5	61	12.4	7	60	1.3
VFX6-080A05A031R	•	5	10	80	60	32	28	16.5	77.3	14.4	8	31	1.5
VFX6-080A05A075R	_	5	25	80	100	32	28	16.5	77.3	14.4	8	75	2.6
VFX6-100A06A031R	•	6	12	100	65	40	30	20.5	96.6	16.4	9	31	2.7
VFX6-100A06A090R	•	6	36	100	115	40	30	20.5	96.6	16.4	9	90	4.8

* WT:Werkzeuggewicht

ERSATZTEILE

	*2	***********		\$	*3	•••••	/		Anzahi	d. WSP
Bestellnummer							4/		Kopfseitige Schneidkante	Umfangs- *1 schneide
	Spannschraube	Anzahl	Dichtung	Schlüssel	Kühlmittel- Schraube	Anzahl	Kupferpaste	Schraube	XNMU1909 oo R- oo	XNMU1909 12R-00
VfX6-063A04A031R	TS450	8	W12-S1	TKY20T	HSD04004H08	12	MK1KS	HSC12045	4	4
VfX6-063A04A060R	TS450	16	W12-S1	TKY20T	HSD04004H08	20	MK1KS	HSC12070	4	12
VfX6-080A05A031R	TS450	10	W16-S1	TKY20T	HSD04004H08	15	MK1KS	HSC16040	5	5
VfX6-080A05A075R	TS450	25	W16-S1	TKY20T	HSD04004H08	30	MK1KS	HSC16080	5	20
VfX6-100A06A031R	TS450	12	W20-S1	TKY20T	HSD04004H08	18	MK1KS	HSC20040	6	6
VfX6-100A06A090R	TS450	36	W20-S1	TKY20T	HSD04004H08	42	MK1KS	HSC20090	6	30

- *1 Für die Umfangsschneiden sind nur WSP mit Eckenradius R1,2 mm verwendbar.
- *2 Spannmoment (N m) : TS450=5.0
- *3 Es stehen Schrauben mit Kühldüsen in unterschiedlichen Durchmessern zum Einstellen des Kühlmitteldrucks zur Verfügung. Wählen Sie die für Ihre Anwendung passenden Düsen aus, um den Kühlmitteldruck und die Zufuhrmenge zu steuern.

	<1Mpa (<20 l/min.)	←Standard→	>5Mpa (>30 l/min.)	>7Mpa (>50 l/min.)
Düsengröße	Ø0.6mm	Ø0.8mm	Ø1.2mm	Ø1.6mm
Bestellnummer	HSD04004H06	HSD04004H08	HSD04004H12	HSD04004H16

^{*} Spannmoment (N • m) : HSD04004H ==1.5

- 1. Bestellnummer für die Schraube ohne Kühlmittelzufuhr lautet HSS04004.
- 2. Beachten Sie bei WSP mit einem Eckenradius von R3,2 mm oder größer, dass das Maß LF zunimmt. Eckenradius R3,2 mm: LF + 0,7 mm Eckenradius R4,0 mm: LF + 1,5 mm Eckenradius R5,0 mm: LF + 1,5 mm

WSP

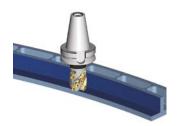
Bestellnummer	MP9030	L	LE	W 1	INSL	s	BS	RE	Abbildung
MS						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u> </u>
XNMU190912R-MS	•	19.1	16.5	9.5	12.7	8.5	1.0	1.2	
XNMU190916R-MS	• •	19.1	16.5	9.5	12.7	8.5	1.0	1.6	
XNMU190924R-MS	• •	19.1	16.5	9.5	12.7	8.5	1.0	2.4	
XNMU190932R-MS	•	20.2	17.2		12.7	8.5	<u> </u>	3.2	
XNMU190940R-MS	•	21.8	18.0	9.5	12.7	8.5		4.0	
*XNMU190950R-MS	• •	21.8	18.0	9.5	12.7	8.5		5.0	Allgemeine Anwendung
HS					••••••				1
XNMU190912R-HS	•	19.1	16.5	9.5	12.7	8.5	1.0	1.2	RE LE
LS	••••••••••••••••		••••••		••••••••		· · · · · · · · · · · · · · · · · · ·		Verstärkte Schneide
XNMU190912R-LS		19.1	16.5	9.5	12.7	8.5	1.0	1.2	

Scharfe Schneide

* Beachten Sie bei WSP mit einem Eckenradius von R3,2 mm oder größer, dass das Maß LF zunimmt. Eckenradius R3,2 mm: LF + 0,7 mm Eckenradius R4,0 mm: LF + 1,5 mm Eckenradius R5,0 mm: LF + 1,5 mm

SCHNITTDATENEMPFEHLUNGEN

Material	DC (mm)	ZEFP	Empfohlene WSP	Vc (m/min)	n (min ⁻¹)	APMX (mm)	ae (mm)	fz (mm/Z.)	Vf (mm/min)	Q (cm3/min)	Pc (kW)	Berechnetes Drehmoment (Nm)	TL (%)
· · · · · · · · · · · · · · · · · · ·		4	LS	40	202	60	63	0.10	81	306	13.4	634	40
	Ø 63	4	MS	50	253	60	38	0.10	101	229	9.5	357	60
	W 03	4	MS	60	303	60	25	0.10	121	183	7.2	228	80
		4	HS	60	303	60	13	0.12	146	110	4.7	148	100
		5	LS	40	159	75	80	0.10	80	477	20.8	1250	40
Titanlegierungen	Ø 80	5	MS	50	199	75	48	0.10	99	358	14.7	705	60
(TiAl4V)	W 60	5	MS	60	239	75	32	0.10	119	286	11.2	449	80
		5	HS	60	239	75	16	0.12	143	172	7.3	291	100
		6	LS	40	127	90	100	0.10	76	688	29.6	2218	40
	Ø 100	6	MS	50	159	90	60	0.10	95	516	20.9	1252	60
	טטו ע	6	MS	60	191	90	40	0.10	115	413	16.0	798	80
		6	HS	60	191	90	20	0.12	138	248	10.3	517	100
		4	LS	25	126	60	63	0.08	40	153	7.0	527	30
	Ø 63	4	MS	25	126	60	38	0.08	40	92	4.0	303	50
	W 03	4	MS	30	152	60	25	0.10	61	92	3.8	241	70
		4	HS	30	152	60	13	0.10	61	46	2.1	133	80
		5	LS	25	99	75	80	0.08	40	239	10.8	1038	30
Titanlegierungen	Ø 80	5	MS	25	99	75	48	0.08	40	143	6.2	597	50
(Ti5Al5V5Mo3Cr)	טס ש	5	MS	30	119	75	32	0.10	60	143	5.9	475	70
		5	HS	30	119	75	16	0.10	60	72	3.3	263	80
		6	LS	25	80	90	100	0.08	38	344	15.3	1841	30
	Ø 100	6	MS	25	80	90	60	0.08	38	206	8.8	1059	50
	טטו ש	6	MS	30	95	90	40	0.10	57	206	8.4	844	70
		6	HS	30	95	90	20	0.10	57	103	4.7	466	80


Bitte beachten Sie, dass die Bearbeitungsleistung von den Bedingungen wie Steifheit der Maschine, Steifheit der Werkstückfixierung, Druck und Durchflussmenge der Kühlmittelversorgung usw. abhängt.
 Eine interne Kühlung wird empfohlen. Bitte verwenden Sie eine Aufnahme mit interner Kühlmittelzufuhr. Eine zusätzliche externe Kühlung

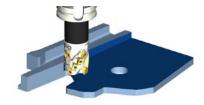
erhöht die Effektivität.

ANWENDUNGSBEISPIELE

Ergebnisse verbessert werde 50% Werkzeug VFX5-050A04A05 Werkstück Titanlegierung (Ti Komponente Bauteil der Luftfa Schnittgeschwindigkeit Vc (m/min) 50 Tischvorschub Vf (mm/min) 127 Zahnvorschub fz (mm/Zahn) 0.1 Radiale Schnitttiefe ae (mm) 50 Axiale Schnitttiefe ap (mm) 10 Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werde Teile mit dünnen V	Intern: 3MPa) te um den Faktor 1,3 n. 1009 OR -6Al-4V) hrtindustrie
Komponente Schnittgeschwindigkeit Vc (m/min) Schnittgeschwindigkeit Vc (m/min) A0 Tischvorschub Vf (mm/min) Tischvorschub Iz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) S-30 Axiale Schnitttiefe ap (mm) Kühlung Ergebnisse Die Effizienz konn verbessert werder 50% Werkzeug Werkzeug Werkstück Titanlegierung (Ti Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Tischvorschub Vf (mm/min) Tischvorschub Iz (mm/Zahn) Axiale Schnitttiefe ap (mm) Axiale Schnitttiefe ap (mm) Tischvorschub Vf (mm/min) Die Effizienz konn verbessert werder Teile mit dünnen verbessert werder	Intern: 3MPa) te um den Faktor 1,3 n. 1004 OR -6Al-4V) hrtindustrie
Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) Kühlung Ergebnisse Die Effizienz konn verbessert werde VFX5-050A04A05 Werkzeug Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub Vz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) Axiale Schnitttiefe ap (mm) Ergebnisse Die Effizienz konn verbessert werde Die Effizienz konn verbessert werde Die Effizienz konn verbessert werde Tiele mit dünnen verbessert werde Teile mit dünnen verbessert werde	te um den Faktor 1,3 n. 100 OR -6Al-4V) hrtindustrie
Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) Kühlung Ergebnisse Die Effizienz konn verbessert werder 50% Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Tischvorschub Vf (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) Tischung Die Effizienz konn verbessert werder 50% Die Effizienz konn verbessert werder 100 Nasszerspanung Die Effizienz konn verbessert werder Teile mit dünnen verbessert werder Teil	te um den Faktor 1,3 n. 100 OR -6Al-4V) hrtindustrie
Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) S-60 Kühlung Die Effizienz konn verbessert werder Som Werkzeug Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Axiale Schnitttiefe ae (mm) Axiale Schnitttiefe ae (mm) Axiale Schnitttiefe ae (mm) Axiale Schnitttiefe ae (mm) Kühlung Die Effizienz konn verbessert werder Die Effizienz konn verbessert werder Die Effizienz konn verbessert werder Teile mit dünnen verbessert werder	te um den Faktor 1,3 n. 100 OR -6Al-4V) hrtindustrie
Radiale Schnitttiefe ae (mm) 5-30 Axiale Schnitttiefe ap (mm) 5-60 Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werde Som VFX5-050A04A05 Werkzeug VFX5-050A04A05 Werkstück Titanlegierung (Titanlegierung (Titanlegierung) Titanlegierung (Titanlegierung) Titanlegierung (Titanlegierung) Titanlegierung (Titanlegierung) Titanlegierung (Titanlegierung) Titanlegierung) 127 Zahnvorschub Vf (mm/min) 127 Zahnvorschub Vz (mm/Zahn) 0.1 Radiale Schnitttiefe ae (mm) 50 Axiale Schnitttiefe ap (mm) 10 Kühlung Nasszerspanung Ergebnisse Verbessert werde Teile mit dünnen verbessert werde Teile mit dün	te um den Faktor 1,3 n. 100 OR -6Al-4V) hrtindustrie
Axiale Schnitttiefe ap (mm) Kühlung Ergebnisse Die Effizienz konn verbessert werde 50% Werkzeug WFX5-050A04A05 Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Tahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) Kühlung Die Effizienz konn verbessert werde Teile mit dünnen N	te um den Faktor 1,3 n. 100 OR -6Al-4V) hrtindustrie
Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werder verkstück Titanlegierung (Titanlegierung (Titanlegie	te um den Faktor 1,3 n. 100 OR -6Al-4V) hrtindustrie
Ergebnisse Die Effizienz konn verbessert werder verbessert verder verder verbessert verder ve	te um den Faktor 1,3 n. 100 OR -6Al-4V) hrtindustrie
Ergebnisse verbessert werde 50% Werkzeug VFX5-050A04A05 Werkstück Titanlegierung (Ti Komponente Bauteil der Luftfa Schnittgeschwindigkeit Vc (m/min) 50 Tischvorschub Vf (mm/min) 127 Zahnvorschub fz (mm/Zahn) 0.1 Radiale Schnitttiefe ae (mm) 50 Axiale Schnitttiefe ap (mm) 10 Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werde Teile mit dünnen V	n. 100' OR -6AL-4V) hrtindustrie
Werkzeug VFX5-050A04A05 Werkstück Titanlegierung (Ti Komponente Bauteil der Luftfa Schnittgeschwindigkeit Vc (m/min) 50 Tischvorschub Vf (mm/min) 127 Zahnvorschub fz (mm/Zahn) 0.1 Radiale Schnitttiefe ae (mm) 50 Axiale Schnitttiefe ap (mm) 10 Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werde Teile mit dünnen V	OR -6Al-4V) hrtindustrie
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) Kühlung Die Effizienz konn Ergebnisse Ergebnisse So%	OR -6Al-4V) hrtindustrie
Werkzeug VFX5-050A04A05 Werkstück Titanlegierung (Ti Komponente Bauteil der Luftfa Schnittgeschwindigkeit Vc (m/min) 50 Tischvorschub Vf (mm/min) 127 Zahnvorschub fz (mm/Zahn) 0.1 Radiale Schnitttiefe ae (mm) 50 Axiale Schnitttiefe ap (mm) 10 Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werde Teile mit dünnen V	OR -6Al-4V) hrtindustrie
Werkzeug VFX5-050A04A05 Werkstück Titanlegierung (Ti Komponente Bauteil der Luftfa Schnittgeschwindigkeit Vc (m/min) 50 Tischvorschub Vf (mm/min) 127 Zahnvorschub fz (mm/Zahn) 0.1 Radiale Schnitttiefe ae (mm) 50 Axiale Schnitttiefe ap (mm) 10 Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werde Teile mit dünnen V	OR -6Al-4V) hrtindustrie
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) Kühlung Die Effizienz konn Ergebnisse Ergebnisse So%	OR -6Al-4V) hrtindustrie
Werkstück Titanlegierung [Ti Komponente Bauteil der Luftfa Schnittgeschwindigkeit Vc [m/min] 50 Tischvorschub Vf [mm/min] 127 Zahnvorschub fz [mm/Zahn] 0.1 Radiale Schnitttiefe ae [mm] 50 Axiale Schnitttiefe ap [mm] 10 Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werde Teile mit dünnen N	-6Al-4V) hrtindustrie
Werkstück Titanlegierung [Ti Komponente Bauteil der Luftfa Schnittgeschwindigkeit Vc [m/min] 50 Tischvorschub Vf [mm/min] 127 Zahnvorschub fz [mm/Zahn] 0.1 Radiale Schnitttiefe ae [mm] 50 Axiale Schnitttiefe ap [mm] 10 Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werde Teile mit dünnen N	-6Al-4V) hrtindustrie
Komponente Bauteil der Luftfa Schnittgeschwindigkeit Vc (m/min) 50 Tischvorschub Vf (mm/min) 127 Zahnvorschub fz (mm/Zahn) 0.1 Radiale Schnitttiefe ae (mm) 50 Axiale Schnitttiefe ap (mm) 10 Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werde Teile mit dünnen V	hrtindustrie
Schnittgeschwindigkeit Vc (m/min) 50 Tischvorschub Vf (mm/min) 127 Zahnvorschub fz (mm/Zahn) 0.1 Radiale Schnitttiefe ae (mm) 50 Axiale Schnitttiefe ap (mm) 10 Kühlung Nasszerspanung Ergebnisse Die Effizienz konn verbessert werde Teile mit dünnen V	
Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) Kühlung Die Effizienz konn Ergebnisse Teile mit dünnen V	(Extern: 1,5MPa)
Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) Kühlung Die Effizienz konn Ergebnisse Ergebnisse Teile mit dünnen N	(Extern: 1,5MPa)
Radiale Schnitttiefe ae (mm) 50 Axiale Schnitttiefe ap (mm) 10 Kühlung Nasszerspanung Die Effizienz konn tergebnisse verbessert werde Teile mit dünnen v	(Extern: 1,5MPa)
Axiale Schnitttiefe ap (mm) 10 Kühlung Nasszerspanung Die Effizienz konn verbessert werde Teile mit dünnen \ 50%	(Extern: 1,5MPa)
Kühlung Nasszerspanung Die Effizienz konn verbessert werde Teile mit dünnen \ 50%	Extern: 1,5MPa)
Die Effizienz konn Ergebnisse verbessert werde Teile mit dünnen \ 50%	(Extern: 1,5MPa)
Ergebnisse verbessert werde Teile mit dünnen \	
	te um den Faktor 1,5 n und es war möglich, <i>N</i> andungen zu bearbeiten.
Workzoug VEVE GEGAG/AGE	100
Morkzoug VEVE 0F040/40F	
· · · · · · · · · · · · · · · · · · ·	
Werkstück Titanlegierung (Ti	-6Al-4V)
Komponente Bauteil der Luftfa	hrtindustrie
Schnittgeschwindigkeit Vc (m/min) 55	
Tischvorschub Vf (mm/min) 140	
Zahnvorschub fz (mm/Zahn) 0.1	
Radiale Schnitttiefe ae (mm) 35	
Axiale Schnittliefe ap (mm) 15	
······································	[Eytorn, 2MPa]
Kühlung Nasszerspanung	EXIGITI: SMPa)
Fraehnisse	chnittdaten konnten für ensenkung genutzt werden.
i i i i i i i i i i i i i i i i i i i	
50%	






Passen Sie Ihre Fräsbedingungen unter Beachtung der obigen Beispiele je nach Maschinendaten, Werkstückgeometrie und verwendeter Klemmung an.

ANWENDUNGSBEISPIELE

Werkzeug	VFX6-080A05A075R	
Werkstück	Titanlegierung (Ti-5553)	
Komponente	Bauteil der Luftfahrtindustrie	
Schnittgeschwindigkeit Vc (m/min)	32.5	
Tischvorschub Vf (mm/min)	25	
Zahnvorschub fz (mm/Zahn)	0.04	
Radiale Schnitttiefe ae (mm)	10-30	
Axiale Schnitttiefe ap (mm)	30-60	
Kühlung	Nasszerspanung (Intern: 7MPa)	
Ergebnisse	Bei gleicher Standzeit (190 Min.) konventioneller Werkzeuge konnt Schnittdaten um den Faktor 1,2 e werden.	
	500/	,
	50%	100%
Werkzeug	VFX6-063A04A060R	
Werkstück	Titanlegierung (Ti-6Al-4V)	
Komponente	Bauteil der Luftfahrtindustrie	
Schnittgeschwindigkeit Vc (m/min)	55	
Tischvorschub Vf (mm/min)	278	
Zahnvorschub fz (mm/Zahn)	0.12	
Radiale Schnitttiefe ae (mm)	10-45	
Axiale Schnitttiefe ap (mm)	25-60	
Kühlung	Nasszerspanung (Intern: 10MPa)	***************************************
	eine Standzeit von 60 Minuten un	d aina um
Ergebnisse 	den Faktor 1,5 höhere Effizienz e werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi	rreicht bei einer
Ergebnisse 	werden. VFX war bei allen Tests b	rreicht bei einer
Ergebnisse	werden. VFX war bei allen Tests b	rreicht bei einer
Ergebnisse	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi	rreicht pei einer n. stabil.
Ergebnisse	werden. VFX war bei allen Tests b	rreicht pei einer n. stabil.
	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi	rreicht pei einer n. stabil.
Werkzeug	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R	rreicht pei einer n. stabil.
Werkzeug Werkstück	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi	rreicht pei einer n. stabil.
Werkzeug Werkstück Komponente	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie	rreicht pei einer n. stabil.
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min)	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie 45	rreicht pei einer n. stabil.
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min)	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie 45	rreicht pei einer n. stabil.
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn)	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie 45 227 0.05	rreicht pei einer n. stabil.
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm)	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie 45 227 0.05 12-37	rreicht pei einer n. stabil.
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm)	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie 45 227 0.05	rreicht pei einer n. stabil.
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm)	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie 45 227 0.05 12-37 5-24	rreicht pei einer n. stabil. 1009 131 reit und um pedingungen.
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm)	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie 45 227 0.05 12-37 5-24 Nasszerspanung (Extern: 1,5MPa Dreimal längere Werkzeugstandz den Faktor 2,7 verbesserte Fräsb	rreicht pei einer n. stabil. 1009 131 reit und um pedingungen.
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm)	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie 45 227 0.05 12-37 5-24 Nasszerspanung (Extern: 1,5MPa Dreimal längere Werkzeugstandz den Faktor 2,7 verbesserte Fräsb	rreicht pei einer n. stabil. 1009 1009 201 201 201 201 201 2
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm)	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie 45 227 0.05 12-37 5-24 Nasszerspanung (Extern: 1,5MPa Dreimal längere Werkzeugstandz den Faktor 2,7 verbesserte Fräsb	rreicht pei einer n. stabil. 1009 1009 201 201 201 201 201 2
Werkzeug Werkstück Komponente Schnittgeschwindigkeit Vc (m/min) Tischvorschub Vf (mm/min) Zahnvorschub fz (mm/Zahn) Radiale Schnitttiefe ae (mm) Axiale Schnitttiefe ap (mm) Kühlung Ergebnisse	werden. VFX war bei allen Tests b max. Abtragung von 400 cm3 /mi 50% VFX6-063A04A060R Titanlegierung (Ti-6Al-4V) Bauteil der Luftfahrtindustrie 45 227 0.05 12-37 5-24 Nasszerspanung (Extern: 1,5MPa Dreimal längere Werkzeugstandz den Faktor 2,7 verbesserte Fräsb	rreicht pei einer n. stabil. 1009 1009 201 201 201 201 201 2

Passen Sie Ihre Fräsbedingungen unter Beachtung der obigen Beispiele je nach Maschinendaten, Werkstückgeometrie und verwendeter Klemmung an.

MITSUBISHI MATERIALS CORPORATION

www.mitsubishicarbide.com | www.mmc-hardmetal.com

GERMANY

MMC HARTMETALL GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone + 49 2159 91890 . Fax + 49 2159 918966

admin@mmchg.de

U.K.

MMC HARDMETAL U.K. LTD.

Mitsubishi House . Galena Close . Tamworth . Staffs. B77 4AS

Phone + 44 1827 312312 . Fax + 44 1827 312314

Email sales@mitsubishicarbide.co.uk

SPAIN

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2 . 46136 Museros/Valencia Phone +34 96 1441711 . Fax +34 96 1443786

Email mme@mmevalencia.com

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone + 33 1 69 35 53 53 . Fax + 33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw

Phone + 48 71335 1620 . Fax + 48 71335 1621 Email sales@mitsubishicarbide.com.pl

RUSSIA

MMC HARDMETAL RUSSIA 000 LTD.

Electrozavodskaya St. 24 . build. 3 . Moscow . 107023

Phone +7 495 725 58 85 . Fax +7 495 981 39 79

Email info@mmc-carbide.ru

ITALY

MMC ITALIA S.R.L.

Via Montefeltro 6/A . 20156 Milano

Phone +39 0293 77031 . Fax +39 0293 589093

info@mmc-italia.it Email

TURKEY

MMC HARTMETALL GMBH ALMANYA - İZMİR MERKEZ ŞUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35580 Bayraklı/İzmir

Phone + 90 232 5015000 . Fax + 90 232 5015007

Email info@mmchg.com.tr

VERTRIEB DURCH:

Bestellnummer: B182D Veröffentlicht: 2018.04 (0), gedruckt in Deutschland