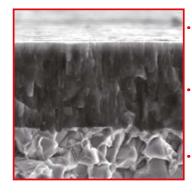
SERIE VQ

L'ULTIMA GENERAZIONE DI FRESE INTEGRALI AD ALTE PRESTAZIONI PER ACCIAI INOSSIDABILI, LEGHE DI TITANIO E LEGHE RESISTENTI AL CALORE

SERIE VQ


PRESTAZIONI RIVOLUZIONARIE PER MATERIALI DIFFICILI DA TAGLIARE

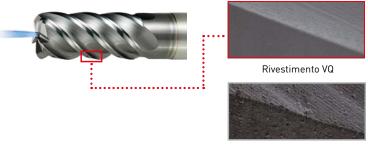
TECNOLOGIA INNOVATIVA

Le frese VQ sono state trattate con un rivestimento recentemente sviluppato del gruppo (Al, Cr)N che garantisce un sostanziale miglioramento della resistenza all'usura. La superficie del rivestimento viene sottoposta ad un trattamento di levigatura che comporta migliorie delle superfici lavorate riducendo la resistenza al taglio e migliorando lo scorrimento dei trucioli. Questa è una nuova generazione di frese rivestite che garantiscono lunga vita all'utensile quando si lavorano acciai inossidabili ed altri materiali difficili da tagliare.

Rivestimento VQ

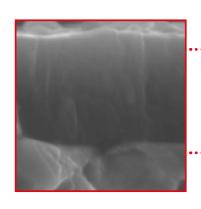
•• Superficie levigata "ZERO-μ"

••• Rivestimento del gruppo (Al, Cr)N recentemente sviluppato


•••• Micro-grana ultrasottile, materiale di base super duro

Rivestimento concorrenza

SUPERFICIE ZERO-µ


Con la particolare superficie ZERO- μ , il bordo tagliente conserva la sua affilatura. Spesso invece le tecnologie precedenti presentavano una affilatura inferiore; la superficie ZERO- μ mantiene invece sia la levigatezza che l'affilatura, oltre a garantire una maggiore vita utensile.

Rivestimento concorrenza

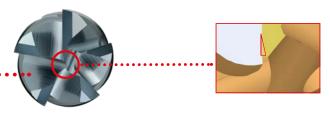
RIVESTIMENTO A BASE (AL, Ti, Si)

I rivestimenti a base N(AlTiSi) mantengono la durezza del film e la resistenza al calore anche nelle condizioni più difficili e sono quindi molto adatti alle frese per la lavorazione di superleghe a base di nichel.

Nuovo rivestimento a base (Al. Ti. Si)

•••• Grado di qualità superiore, progettato per un'alta resistenza all'usura

Rivestimento VQN



VQLCS/VQELCS/ VQJCSR/VQLCSR/VQELCSR

NUOVA FRESA CON PASSO VARIABILE E GEOMETRIA ROMPITRUCIOLO

GEOMETRIA DEL TAGLIENTE ESCLUSIVA

La geometria del tagliente esclusiva offre un'elevata resistenza alla scheggiatura.

PASSO VARIABILE E PICCOLO ANGOLO DI SPOGLIA DEL TAGLIENTE PERIFERICO

Grazie alle eccellenti caratteristiche antivibranti, le vibrazioni sono eliminate permettendo così una lavorazione stabile.

FUNZIONE ROMPITRUCIOLO

Evita i problemi legati alla formazione dei trucioli combinando l'ottima capacità di rottura del truciolo con la resistenza alla frattura.

GEOMETRIA DEL VANO TRUCIOLI IDONEA PER UNA LAVORAZIONE ALTAMENTE EFFICIENTE

La sezione trasversale rigida con caratteristiche di evacuazione eccellente dei trucioli è ideale per la lavorazione altamente efficiente, ad es.fresatura con metodo trocoidale.

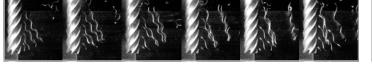
VQELCSRB (5 x DC)

Valcs (4 x DC)

VQJCS/VQLCS

FUNZIONE ROMPITRUCIOLO: CONFRONTO CON TELECAMERA AD ALTA VELOCITÀ

L'eccellente rottura del truciolo riduce gli intasamenti e permette di rimuovere i trucioli in maniera efficiente, riducendo al contempo l'accumulo degli stessi all'interno della macchina.


VQLCS

Dopo la lavorazione con **VQLCS**

Senza rompitruciolo

Dopo la lavorazione tradizionale

VALUTAZIONE DELLA FRESATURA CON METODO TROCOIDALE

ae = 1.8 mm

ae = 2.4 mm

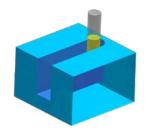
ae = 3.0 mm

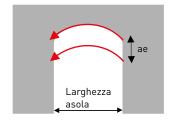
ae = 3.6 mm

ae = 6.0 mm

VQLCS

Convenzionale


Convenzionale

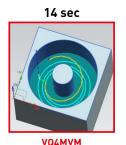


🛩 : Permette di ottenere una lavorazione stabile 💢 : Problemi causati dai trucioli

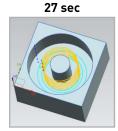
Materiale	1.4301
Utensile	VQJCSD1200
Vc (m/min)	100
fz (mm)	0.05
ap (mm)	24 (DCx2)
ae Passo (mm)	1.8 – 6.0
Larghezza asola (mm)	18 (DCx1.5)
Sbalzo utensile (mm)	60 (DCx5)
Modalità di taglio	Fresatura con metodo trocoidale Refrigerante esterno (emulsione)

VQ4MVM

FRESA MULTIFUNZIONALE IN GRADO DI TAGLIARE CON ANGOLI DI RAMPA MOLTO AMPI SU OGNI TIPO DI MATERIALE


LA RAMPA È UN METODO DI AFFONDAMENTO GRADUALE DURANTE LA TRASLAZIONE DELL'UTENSILE

In questo modo si elimina la necessità di un foro pilota per la lavorazione delle tasche, riducendo i costi grazie al consolidamento degli utensili. Rispetto al taglio a tuffo diretto, la rampa consente l'avanzamento simultaneo multiasse ad alta velocità per ridurre i tempi di lavorazione. Questo metodo è ideale per la lavorazione di tasche larghe e poco profonde.



Capacità di rampa con angoli molto elevati

VQ4MVM offre prestazioni elevate e multifunzionalità. Può eseguire la fresatura di spallamento, cava e lavorazione elicoidale, nonché angoli di rampa fino a 30° in acciai al carbonio e legati.

Elicoidale e rampa È necessaria solo 1 passata

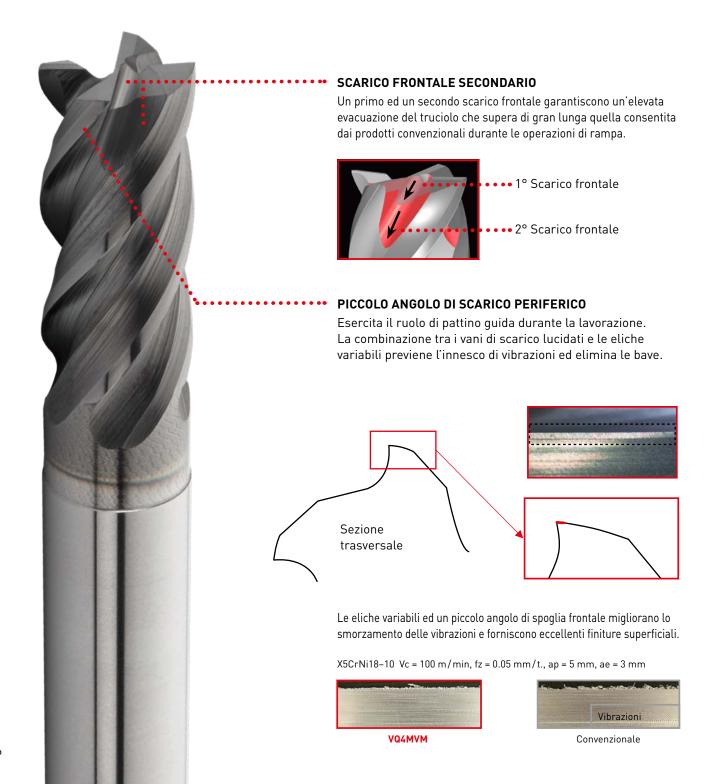
Convenzionale Fresatura elicoidale 7 passate necessarie

Fresatura elicoidale

VQ4MVM

FRESA INTEGRALE AD ALTE PERFORMANCE

RIVESTIMENTO DI NUOVA CONCEZIONE CON MIGLIORE RESISTENZA ALL'USURA

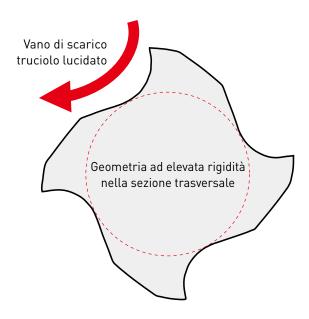

Il trattamento di lucidatura del rivestimento riduce la resistenza al taglio e migliora notevolmente lo scorrimento dei trucioli.

Rivestimento SMART MIRACLE

Il rivestimento (Al,Cr)N è il più adatto per una lavorazione più efficiente.

ZERO-µ Surface

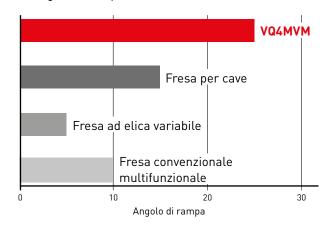
L'originale tecnologia di trattamento della superficie garantisce uno strato di rivestimento liscio.


VQ4MVM

FRESA INTEGRALE AD ALTE PERFORMANCE

VANO TRUCIOLO E GEOMETRIA ALTAMENTE RIGIDA

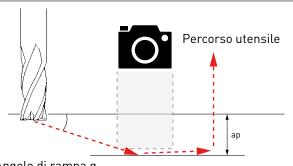
La fresa integrale VQ4MVM è adatta per lavorazioni in rampa impegnative e prestazioni di elevata evacuazione truciolo grazie alla geometria altamente rigida.



CONFRONTO DEGLI ANGOLI DI RAMPA NELLA LAVORAZIONE DI AISI 304

Fornisce una buona superficie lavorata quando si lavora con un angolo di rampa di 25°.

Materiale	AISI 304
Utensile	Ø 10
Vc (m/min)	50
fz (mm)	0.025
ap (mm)	10
ae (mm)	10
Sbalzo utensile (mm)	35
Modalità di taglio	Refrigerante esterno (emulsione)
Macchina	Centro di lavoro verticale (BT50)


SUPERFICIE DI LAVORAZIONE

Fresa convenzionale

PUNTO DI ATTACCO

Angolo di rampa a

SERIE VQ

CLASSIFICAZIONE

	Codice prodotto		Forma	DC	Р	Н	М	S	N	(II)
	FRESA INTEGRA	LE TORICA								
	VQN4/6MVRB	Torica, Lunghezza di taglio media, 4 / 6 eliche		3 - 12				0		11
•	VQT5MVRB	Raggio torico, lunghezza di taglio media, 5 taglienti, elica variabile, foro per il passaggio del refrigerante		16 - 25				0		13
NEW	VQJCSRB	Toriche, lunghezza tagliente semilunga, 5 taglienti, eliche variabili, rompitruciolo		6 - 20	0		0	0	0	15
NEW	VQLCSRB	Toriche, lunghezza tagliente lunga, 5 taglienti, eliche variabili, rompitruciolo		6 - 20	0		0	0	0	18
NEW	VQELCSRB	Toriche, lunghezza tagliente extralunga, 5 taglienti, eliche variabili, rompitruciolo		6 - 20	0		0	0	0	21
	VQ6MHVRBCH	Fresa integrale torica, lunghezza di taglio media, 6 taglienti, eliche variabili, con fori interni per il passaggio del refrigerante		10 - 20			0	0		24
-	VQMHVRB	Fresa con raggio torico, lunghezza tagliente media, 4 taglienti, eliche variabili		2 - 20	0		0	0	0	26
-	VQMHVRBF	Fresa torica per finitura, lunghezza tagliente media, 4 taglienti, eliche variabili		6 - 16	0		0	0	0	36
-	VQHVRB	Torica, tagliente corto, 4 taglienti, eliche variabili	800	1 - 4	0		0	0	0	39
-	VQFDRB	Fresa integrale torica a doppio raggio per fresature ad alto avanzamento		3 - 6	0	0	0	0		41

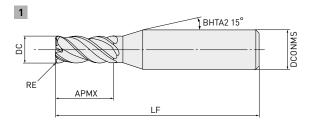
SERIE VQ - CLASSIFICAZIONE

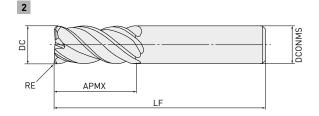
Codice prodotto		Forma	DC	Р	Н	М	S	N	
FRESE INTEGR	RALI A FONDO PIANO			Г					
VQJCS	Fresa, lunghezza di taglio semilunga (3 x DC), 5 taglienti, passo variabile, rompitruciolo	THE SEE	6 - 20	0		0	0	0	43
VQLCS	Fresa, lunghezza di taglio lunga (4 x DC), 5 taglienti, passo variabile, rompitruciolo	500000	6 - 12 NEW 16, 20	0		0	0	0	45
VQELCS	Fresa, lunghezza tagliente extralunga, 5 taglienti, eliche variabili, rompitruciolo		6 - 20	0		0	0	0	47
VQ6MHVCH	Fresa integrale, lunghezza di taglio media, 6 taglienti, eliche variabili, con fori interni per il passaggio del refrigerante		10 - 20			0	0		49
VQXL	Fresa con lunghezza tagliente corta, 4 taglienti, per lavorazioni profonde		0.2 - 1	0		0	0	0	51
VQMHZV	Fresa con lunghezza tagliente media, 3 taglienti per fresatura a tuffo e fresatura di cave		1 - 20	0		0	0	0	55
VQMHZVOH	Fresa con lunghezza tagliente media, 3 taglienti per fresatura a tuffo e fresatura di cave con fori interni per passaggio refrigerante.		6 - 16	0		0	0	0	70
VQ4MVM	Fresa integrale, lunghezza di taglio media, 4 taglienti, fresatura multifunzionale		4 - 12	0	0	0	0		75
VQMHV	Fresa con lunghezza taglenteo media, 4 taglienti, eliche variabili, Disponibili con gambi scaricati per lavorazioni con elevati sbalzi su pareti verticali		1 - 25	0		0	0	0	79
ΛΘΊΗΛ	Fresa con lunghezza tagliente semilunga, 4 taglienti, eliche variabili		1 - 20	0		0	0	0	89
VQSVR	Fresa per sgrossatura, lunghezza tagliente corta, 4 taglienti, eliche variabili		3 - 20	0		0	0	0	92

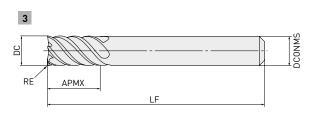
SERIE VQ - CLASSIFICAZIONE

Codice prodotto	RALE CON TESTA SEMISFERICA	Forma	DC	Р	Н	М	S	N	(1)
VQN2MB	Testa semisferica, lunghezza di taglio media, 2 taglienti		1 - 12				0		101
VQ2XLB	Testa semisferica, tagliente corto, 2 taglienti, rastremazione lunga		1 - 3	0		0	0	0	103
VQN4MB	Testa semisferica, lunghezza di taglio media, 4 taglienti		2 - 12				0		105
VQN4MBF	Testa semisferica, lunghezza di taglio media, 4 taglienti		2 - 12				0		107
VQ4SVB	Testa semisferica, lunghezza tagliente corta, 4 taglienti, curva variabile		1 – 6	0		0	0	0	109
VQ4WB	Lollipop multifunzione, tagliente corto, 4 taglienti		1 – 6	0		0	0	0	111
FRESA A BARI									
VQT6UR	Forma a barile, lunghezza di taglio media, 6 taglienti		8 - 12	0		0	0	0	114

VQN4/6MVRB 🕮 🥮 🔮






TORICHE, LUNGHEZZA DI TAGLIO MEDIA, 4/6 ELICHE

VQN4	VQN6	
±0.015	±0.02	
DC≤12		

0 - 0.02

DCONMS = 6	DCONMS = 8, 12	DCONMS = 12
0	0	0
-0.008	- 0.009	- 0.012

- Il rivestimento a base di (Al, Ti, Si) N mostra un'eccellente resistenza all'usura e alla scheggiatura durante la lavorazione di superleghe resistenti al calore.
- Numero di eliche ottimizzato per una fresatura efficiente e stabile.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	DCONMS	ZEFP	Tipo
VQN4MVRBD0300R030	•	3	0.3	7	45	6	4	1
VQN4MVRBD0300R050	•	3	0.5	7	45	6	4	1
VQN4MVRBD0400R030	•	4	0.3	10	45	6	4	1
VQN4MVRBD0400R050	•	4	0.5	10	45	6	4	1
VQN4MVRBD0500R050	•	5	0.5	12	50	6	4	1
VQN4MVRBD0600R050	•	6	0.5	13	50	6	4	2
VQN4MVRBD0600R100	•	6	1	13	50	6	4	2
VQN6MVRBD0800R050	•	8	0.5	19	60	8	6	3
VQN6MVRBD0800R100	•	8	1	19	60	8	6	3
VQN6MVRBD1000R050	•	10	0.5	22	70	10	6	3
VQN6MVRBD1000R100	•	10	1	22	70	10	6	3
VQN6MVRBD1200R050	•	12	0.5	26	75	12	6	3
VQN6MVRBD1200R100	•	12	1	26	75	12	6	3

VQN4/6MVRB

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

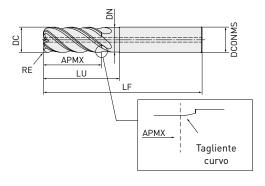
	Materiale	DC	ZEFP	n	Vf	ар	ae
		3	4	4200	340	4.5	0.3
		4	4	3200	260	6	0.4
		5	4	2500	300	7.5	0.5
S	Superleghe resistenti al calore a base Nickel	6	4	2100	250	9	0.6
	a base Micket	8	6	1600	290	12	0.8
		10	6	1300	310	15	1
		12	6	1100	260	18	1.2
							1/1

FRESATURA IN CAVA DAL PIENO

	Materiale	DC	ZEFP	n	Vf	ар
		3	4	3200	260	1.5
		4	4	2400	190	2
		5	4	1900	230	2.5
S	Superleghe resistenti al calore a base Nickel	6	4	1600	190	3
	a base tweeter	8	6	1200	140	4
		10	6	1000	120	5
		12	6	800	140	6

- 1. Per le superleghe resistenti al calore, l'uso di refrigerante idrosolubile è efficace.
- 2. Le vibrazioni possono ancora verificarsi se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In questi casi l'avanzamento e la velocità dovrebbero essere ridotti proporzionalmente.
- 3. Se la profondità di taglio è ridotta, è possibile aumentare la velocità di rotazione e l'avanzamento.

VQT5MVRB



RAGGIO TORICO, LUNGHEZZA DI TAGLIO MEDIA, 5 TAGLIENTI, ELICA VARIABILE, FORO PER IL PASSAGGIO DEL REFRIGERANTE

S

±0.02

DC<16	20 <dc<25< th=""></dc<25<>
0	0
- 0.03	- 0.04

- 0.03	- 0.04
DCONMS = 16	20 <dconms<25< td=""></dconms<25<>
0 -0.011	0 - 0.013

- Geometria di taglio adatta a fresatura di cave profonde e a un'evacuazione efficiente dei trucioli.
- I taglienti affilati favoriscono una lunga vita utensile nella lavorazione di leghe di titanio.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LU	DN	LF	DCONMS	ZEFP
VQT5MVRB160R100N48C	•	16	1	35	48	15.5	120	16	
VQT5MVRB160R300N48C	•	16	3	35	48	15.5	120	16	
VQT5MVRB160R400N48C	•	16	4	35	48	15.5	120	16	
VQT5MVRB200R100N60C	•	20	1	45	60	19.5	135	20	
VQT5MVRB200R300N60C	•	20	3	45	60	19.5	135	20	
VQT5MVRB200R400N60C	•	20	4	45	60	19.5	135	20	5
VQT5MVRB200R600N60C	•	20	6	45	60	19.5	135	20	
VQT5MVRB250R100N75C	•	25	1	55	75	24.5	155	25	
VQT5MVRB250R300N75C	•	25	3	55	75	24.5	155	25	
VQT5MVRB250R400N75C	•	25	4	55	75	24.5	155	25	
VQT5MVRB250R600N75C	•	25	6	55	75	24.5	155	25	

1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; pertanto, azzeratori utensile a contatto esterno (trasmissione elettrica) potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore del tipo a contatto interno (non elettrico) o del tipo laser.

14 (Vc)

^{2.} Dimensioni del raggio torico non standard sono disponibili su ordinazione. Potete contattarci per informazioni dettagliate.

VQT5MVRB

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

	Matariala			Lungi	nezza sporgenza [OC x 3	
	Materiale	DC	Vc	n	Vf	ар	ae
		16	80	1600	800	32	2.4
S	Leghe di titanio Ti-6Al-4V ecc.	20	80	1300	650	40	3.0
	11 6/10 47 666.	25	80	1000	500	50	3.8

FRESATURA DI CAVE

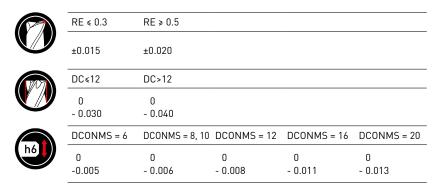
Mata	÷-1-				Profondità di	taglio DC x 1	
Mater	riale	RE	DC	Vc	n	Vf	ар
			16	60	1200	420	16
			16	60	1200	300	16
Leghe	e di titanio	1 /	20	60	950	330	20
	l-4V ecc.	1-4	20	60	950	238	20
			25	50	640	220	25
			25	50	640	160	25

				Profondità di taglio DC x 2					
Materiale	RE	DC	Vc	n	Vf	ар			
	,	16	60	1200	240	32			
		16	60	1200	180	32			
Leghe di titanio	4 /	20	60	950	190	40			
Ti-6Al-4V ecc.	1-4	20	60	950	143	40			
		25	50	640	130	50			
		25	50	640	96	50			

- 1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; pertanto, azzeratori utensile a contatto esterno (trasmissione elettrica) potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore del tipo a contatto interno (non elettrico) o del tipo laser.
- 2. Durante il taglio di leghe di titanio, è particolarmente efficace l'utilizzo di fluido di taglio non solubile in acqua.
- 3. La fresa frontale con elica variabile consente un maggiore controllo delle vibrazioni rispetto alle frese frontali standard. Tuttavia, se la rigidità della macchina o del bloccaggio del materiale è ridotta, si possono verificare vibrazioni o rumori anomali. In questo caso, ridurre proporzionalmente la velocità di taglio e la velocità di avanzamento oppure impostare una profondità di taglio minre.
- 4. In caso di profondità di taglio inferiori, è possibile aumentare la velocità di avanzamento.
- 5. In operazioni di fresatura di cave dal pieno ove le profondità di taglio superino il diametro fresa, utilizzare un mandrino a forte serraggio o sistemi di serraggio con meccanismi anti-sfilamento. Assicurarsi poi che lo staffaggio del pezzo e la rigidità complessiva siano sufficienti.

VQJCSRB

TORICHE, LUNGHEZZA TAGLIENTE SEMILUNGA, 5 TAGLIENTI, ELICHE VARIABILI, ROMPITRUCIOLO



- Fresa con rompitruciolo per una rottura efficiente del truciolo per ottenere superfici con una buona finitura.
- Fresa antivibrante ad elevata rigidità con rivestimento SMART MIRACLE per una fresatura trocoidale estremamente efficiente.

	bilità						
Codice ordinazione	Disponibilità	DC	RE	APMX	LF	DCONMS	ZEFP
VQJCSRBD0600R010	*	6	0.1	18	70	6	5
VQJCSRBD0600R020	*	6	0.2	18	70	6	5
VQJCSRBD0600R030	•	6	0.3	18	70	6	5
VQJCSRBD0600R050	•	6	0.5	18	70	6	5
VQJCSRBD0600R100	•	6	1.0	18	70	6	5
VQJCSRBD0800R020	*	8	0.2	24	80	8	5
VQJCSRBD0800R030	•	8	0.3	24	80	8	5
VQJCSRBD0800R050	•	8	0.5	24	80	8	5
VQJCSRBD0800R100	•	8	1.0	24	80	8	5
VQJCSRBD0800R150	•	8	1.5	24	80	8	5
VQJCSRBD0800R200	*	8	2.0	24	80	8	5
VQJCSRBD1000R020	*	10	0.2	30	90	10	5
VQJCSRBD1000R030	*	10	0.3	30	90	10	5
VQJCSRBD1000R050	•	10	0.5	30	90	10	5
VQJCSRBD1000R100	•	10	1.0	30	90	10	5
VQJCSRBD1000R150	•	10	1.5	30	90	10	5
VQJCSRBD1000R200	•	10	2.0	30	90	10	5

 Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; pertanto, azzeratori utensile a contatto esterno (trasmissione elettrica) potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore del tipo a contatto interno (non elettrico) o del tipo laser.

VQJCSRB - TORICHE, LUNGHEZZA TAGLIENTE SEMILUNGA, 5 TAGLIENTI, ELICHE VARIABILI, ROMPITRUCIOLO

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	DCONMS	ZEFP
VQJCSRBD1000R250	*	10	2.5	30	90	10	5
VQJCSRBD1200R050	•	12	0.5	36	100	12	5
VQJCSRBD1200R100	•	12	1.0	36	100	12	5
VQJCSRBD1200R150	•	12	1.5	36	100	12	5
VQJCSRBD1200R200	•	12	2.0	36	100	12	5
VQJCSRBD1200R250	*	12	2.5	36	100	12	5
VQJCSRBD1200R300	•	12	3.0	36	100	12	5
VQJCSRBD1600R050	*	16	0.5	48	110	16	5
VQJCSRBD1600R100	•	16	1.0	48	110	16	5
VQJCSRBD1600R200	•	16	2.0	48	110	16	5
VQJCSRBD1600R250	*	16	2.5	48	110	16	5
VQJCSRBD1600R300	•	16	3.0	48	110	16	5
VQJCSRBD1600R400	*	16	4.0	48	110	16	5
VQJCSRBD1600R500	•	16	5.0	48	110	16	5
VQJCSRBD1600R600	*	16	6.0	48	110	16	5
VQJCSRBD2000R050	*	20	0.5	60	125	20	5
VQJCSRBD2000R100	•	20	1.0	60	125	20	5
VQJCSRBD2000R200	•	20	2.0	60	125	20	5
VQJCSRBD2000R250	*	20	2.5	60	125	20	5
VQJCSRBD2000R300	•	20	3.0	60	125	20	5
VQJCSRBD2000R400	*	20	4.0	60	125	20	5
VQJCSRBD2000R500	•	20	5.0	60	125	20	5
VQJCSRBD2000R600	*	20	6.0	60	125	20	5

 Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; pertanto, azzeratori utensile a contatto esterno (trasmissione elettrica) potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore del tipo a contatto interno (non elettrico) o del tipo laser.

VQJCSRB

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

	Materiale	DC	Vc	n	Vf	ар	ae	hm	h max
		6	200	10600	1800	18	0.9	0.010	0.019
		8	200	8000	1800	24	1.2	0.013	0.025
	Acciaio al carbonio,	10	200	6400	1700	30	1.5	0.016	0.029
	Acciaio legato, acciaio dolce	12	200	5300	1700	36	1.8	0.019	0.035
		16	200	4000	1400	48	2.4	0.020	0.039
Р		20	200	3200	1200	60	3.0	0.023	0.043
Р		6	180	9500	1500	18	0.9	0.009	0.017
		8	180	7200	1500	24	1.2	0.012	0.023
	Acciaio pretemprato,	10	180	5700	1400	30	1.5	0.015	0.028
	acciaio legato per utensili	12	180	4800	1400	36	1.8	0.017	0.032
		16	180	3600	1200	48	2.4	0.018	0.035
		20	180	2900	1000	60	3.0	0.021	0.039
		6	120	6400	1000	18	0.5	0.006	0.012
М	Acciai inossidabili austenitici,	8	120	4800	1000	24	0.6	0.008	0.016
	ferritici e	10	120	3800	900	30	0.8	0.010	0.019
	martensitici,	12	120	3200	800	36	0.9	0.011	0.021
S	Leghe di titanio	16	120	2400	700	48	1.2	0.012	0.023
		20	120	1900	600	60	1.5	0.013	0.026
		6	100	5300	800	18	0.5	0.006	0.012
		8	100	4000	800	24	0.6	0.008	0.016
М	Acciai inossidabili temprati,	10	100	3200	800	30	0.8	0.010	0.019
IVI	lega di cromo cobalto	12	100	2700	700	36	0.9	0.011	0.021
		16	100	2000	600	48	1.2	0.012	0.023
		20	100	1600	500	60	1.5	0.013	0.026
		6	220	11700	2100	18	0.9	0.010	0.019
		8	220	8800	2100	24	1.2	0.014	0.026
N	Rame,	10	220	7000	1800	30	1.5	0.015	0.028
IN	Lega di rame	12	220	5800	1800	36	1.8	0.018	0.034
		16	220	4400	1500	48	2.4	0.020	0.038
		20	220	3500	1400	60	3.0	0.022	0.042
		6	40	2100	200	18	0.18	0.002	0.004
		8	40	1600	200	24	0.24	0.003	0.006
S	Leghe resistenti al calore	10	40	1300	200	30	0.30	0.003	0.007
3	Legne resistenti di catore	12	40	1100	100	36	0.36	0.003	0.007
		16	40	800	100	48	0.48	0.004	0.007
		20	40	600	100	60	0.60	0.004	0.007

^{1.} Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, gli azzeratori a contatto elettrico potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore a contatto meccanico o laser.

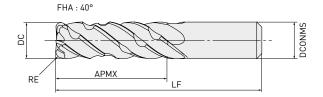
^{2.} La fresa con passo variabile consente un maggiore controllo delle vibrazioni rispetto alle frese standard. Tuttavia, se la rigidità della macchina o del bloccaggio del materiale è ridotta, si possono verificare vibrazioni o rumori anomali. In questo caso regolare il numero di giri, la velocità di avanzamento e la profondità di taglio.

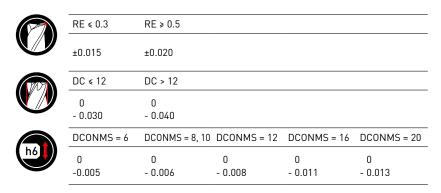
^{3.} È possibile aumentare numero di giri e velocità di avanzamento a fronte di una profondità di taglio minore.

^{4.} Per la lavorazione di acciaio inossidabile, leghe di titanio e leghe resistenti al calore, l'impiego di un refrigerante idrosolubile è efficiente.

VQLCSRB

TORICHE, LUNGHEZZA TAGLIENTE LUNGA, 5 TAGLIENTI, ELICHE VARIABILI, ROMPITRUCIOLO





- Fresa con rompitruciolo per una rottura efficiente del truciolo per ottenere superfici con una buona finitura.
- Fresa antivibrante ad elevata rigidità con rivestimento SMART MIRACLE per una fresatura trocoidale estremamente efficiente.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	DCONMS	ZEFP
VQLCSRBD0600R010	*	6	0.1	24	70	6	5
VQLCSRBD0600R020	*	6	0.2	24	70	6	5
VQLCSRBD0600R030	•	6	0.3	24	70	6	5
VQLCSRBD0600R050	•	6	0.5	24	70	6	5
VQLCSRBD0600R100	•	6	1.0	24	70	6	5
VQLCSRBD0800R020	*	8	0.2	32	90	8	5
VQLCSRBD0800R030	•	8	0.3	32	90	8	5
VQLCSRBD0800R050	•	8	0.5	32	90	8	5
VQLCSRBD0800R100	•	8	1.0	32	90	8	5
VQLCSRBD0800R150	•	8	1.5	32	90	8	5
VQLCSRBD0800R200	*	8	2.0	32	90	8	5
VQLCSRBD1000R020	*	10	0.2	40	100	10	5
VQLCSRBD1000R030	*	10	0.3	40	100	10	5
VQLCSRBD1000R050	•	10	0.5	40	100	10	5
VQLCSRBD1000R100	•	10	1.0	40	100	10	5
VQLCSRBD1000R150	•	10	1.5	40	100	10	5
VQLCSRBD1000R200	•	10	2.0	40	100	10	5

 Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; pertanto, azzeratori utensile a contatto esterno (trasmissione elettrica) potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore del tipo a contatto interno (non elettrico) o del tipo laser.

18

VQLCSRB - TORICHE, LUNGHEZZA TAGLIENTE LUNGA, 5 TAGLIENTI, ELICHE VARIABILI, ROMPITRUCIOLO

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	DCONMS	ZEFP
VQLCSRBD1000R250	*	10	2.5	40	100	10	5
VQLCSRBD1200R050	•	12	0.5	48	110	12	5
VQLCSRBD1200R100	•	12	1.0	48	110	12	5
VQLCSRBD1200R150	•	12	1.5	48	110	12	5
VQLCSRBD1200R200	•	12	2.0	48	110	12	5
VQLCSRBD1200R250	*	12	2.5	48	110	12	5
VQLCSRBD1200R300	•	12	3.0	48	110	12	5
VQLCSRBD1600R050	*	16	0.5	64	130	16	5
VQLCSRBD1600R100	•	16	1.0	64	130	16	5
VQLCSRBD1600R200	•	16	2.0	64	130	16	5
VQLCSRBD1600R250	•	16	2.5	64	130	16	5
VQLCSRBD1600R300	•	16	3.0	64	130	16	5
VQLCSRBD1600R400	*	16	4.0	64	130	16	5
VQLCSRBD1600R500	•	16	5.0	64	130	16	5
VQLCSRBD1600R600	*	16	6.0	64	130	16	5
VQLCSRBD2000R050	*	20	0.5	80	150	20	5
VQLCSRBD2000R100	•	20	1.0	80	150	20	5
VQLCSRBD2000R200	•	20	2.0	80	150	20	5
VQLCSRBD2000R250	*	20	2.5	80	150	20	5
VQLCSRBD2000R300	•	20	3.0	80	150	20	5
VQLCSRBD2000R400	*	20	4.0	80	150	20	5
VQLCSRBD2000R500	•	20	5.0	80	150	20	5
VQLCSRBD2000R600	*	20	6.0	80	150	20	5

Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; pertanto, azzeratori utensile a contatto esterno (trasmissione elettrica) potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore del tipo a contatto interno (non elettrico) o del tipo laser.

VQLCSRB

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

	Materiale	DC	Vc	n	Vf	ар	ae	hm	h max
		6	180	9500	1600	24	0.6	0.008	0.015
		8	180	7200	1600	32	0.8	0.010	0.020
	Acciaio al carbonio,	10	180	5700	1500	40	1.0	0.012	0.023
	Acciaio legato, acciaio dolce	12	180	4800	1500	48	1.2	0.015	0.028
		16	180	3600	1300	64	1.6	0.017	0.033
Р		20	180	2900	1100	80	2.0	0.018	0.035
Р		6	160	8500	1200	24	0.6	0.007	0.013
		8	160	6400	1300	32	0.8	0.009	0.018
	Acciaio pretemprato,	10	160	5100	1200	40	1.0	0.011	0.022
	acciaio legato per utensili	12	160	4200	1200	48	1.2	0.013	0.025
		16	160	3200	1000	64	1.6	0.015	0.028
		20	160	2500	800	80	2.0	0.015	0.029
		6	100	5300	800	24	0.3	0.005	0.010
М	Acciai inossidabili austenitici,	8	100	4000	800	32	0.4	0.006	0.013
	ferritici e	10	100	3200	700	40	0.5	0.008	0.015
	martensitici,	12	100	2700	700	48	0.6	0.008	0.017
S	Leghe di titanio	16	100	2100	600	64	0.8	0.010	0.019
		20	100	1600	500	80	1.0	0.011	0.021
		6	90	4800	700	24	0.3	0.005	0.010
		8	90	3600	700	32	0.4	0.006	0.013
М	Acciai inossidabili temprati,	10	90	2900	700	40	0.5	0.008	0.015
IVI	lega di cromo cobalto	12	90	2400	600	48	0.6	0.008	0.016
		16	90	1800	500	64	0.8	0.009	0.019
		20	90	1400	400	80	1.0	0.010	0.019
		6	200	10600	1800	24	0.6	0.008	0.015
		8	200	8000	1800	32	0.8	0.011	0.020
N	Rame,	10	200	6400	1600	40	1.0	0.012	0.022
IN	Lega di rame	12	200	5300	1600	48	1.2	0.014	0.027
		16	200	4000	1400	64	1.6	0.017	0.032
		20	200	3200	1300	80	2.0	0.019	0.037
		6	30	1600	100	24	0.12	0.002	0.003
		8	30	1200	100	32	0.16	0.002	0.004
S	Leghe resistenti al calore	10	30	1000	100	40	0.20	0.003	0.005
-3	Legile resistenti at catore	12	30	800	100	48	0.24	0.003	0.005
		16	30	600	80	64	0.32	0.003	0.006
		20	30	500	80	80	0.40	0.003	0.007

^{1.} Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, gli azzeratori a contatto elettrico potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore a contatto meccanico o laser.

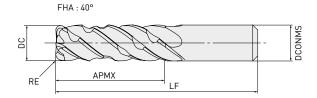
^{2.} La fresa con passo variabile consente un maggiore controllo delle vibrazioni rispetto alle frese standard. Tuttavia, se la rigidità della macchina o del bloccaggio del materiale è ridotta, si possono verificare vibrazioni o rumori anomali. In questo caso regolare il numero di giri, la velocità di avanzamento e la profondità di taglio.

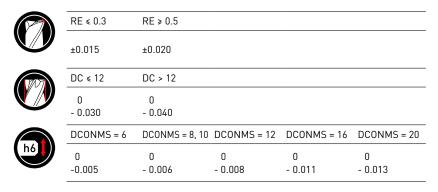
^{3.} È possibile aumentare numero di giri e velocità di avanzamento a fronte di una profondità di taglio minore.

^{4.} Per la lavorazione di acciaio inossidabile, leghe di titanio e leghe resistenti al calore, l'impiego di un refrigerante idrosolubile è efficiente.

VQELCSRB

TORICHE, LUNGHEZZA TAGLIENTE EXTRALUNGA, 5 TAGLIENTI, ELICHE VARIABILI, ROMPITRUCIOLO





- Fresa con rompitruciolo per una rottura efficiente del truciolo per ottenere superfici con una buona finitura.
- Fresa antivibrante ad elevata rigidità con rivestimento SMART MIRACLE per una fresatura trocoidale estremamente efficiente.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	DCONMS	ZEFP
VQELCSRBD0600R010	*	6	0.1	30	80	6	5
VQELCSRBD0600R020	*	6	0.2	30	80	6	5
VQELCSRBD0600R030	•	6	0.3	30	80	6	5
VQELCSRBD0600R050	•	6	0.5	30	80	6	5
VQELCSRBD0600R100	•	6	1.0	30	80	6	5
VQELCSRBD0800R020	*	8	0.2	40	100	8	5
VQELCSRBD0800R030	•	8	0.3	40	100	8	5
VQELCSRBD0800R050	•	8	0.5	40	100	8	5
VQELCSRBD0800R100	•	8	1.0	40	100	8	5
VQELCSRBD0800R150	•	8	1.5	40	100	8	5
VQELCSRBD0800R200	*	8	2.0	40	100	8	5
VQELCSRBD1000R020	*	10	0.2	50	110	10	5
VQELCSRBD1000R030	*	10	0.3	50	110	10	5
VQELCSRBD1000R050	•	10	0.5	50	110	10	5
VQELCSRBD1000R100	•	10	1.0	50	110	10	5
VQELCSRBD1000R150	•	10	1.5	50	110	10	5
VQELCSRBD1000R200	•	10	2.0	50	110	10	5

 Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; pertanto, azzeratori utensile a contatto esterno (trasmissione elettrica) potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore del tipo a contatto interno (non elettrico) o del tipo laser.

VQELCSRB – TORICHE, LUNGHEZZA TAGLIENTE EXTRALUNGA, 5 TAGLIENTI, ELICHE VARIABILI, ROMPITRUCIOLO

	ità						
Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	DCONMS	ZEFP
VQELCSRBD1000R250	*	10	2.5	50	110	10	5
VQELCSRBD1200R050	•	12	0.5	60	125	12	5
VQELCSRBD1200R100	•	12	1.0	60	125	12	5
VQELCSRBD1200R150	•	12	1.5	60	125	12	5
VQELCSRBD1200R200	•	12	2.0	60	125	12	5
VQELCSRBD1200R250	*	12	2.5	60	125	12	5
VQELCSRBD1200R300	•	12	3.0	60	125	12	5
VQELCSRBD1600R050	*	16	0.5	80	150	16	5
VQELCSRBD1600R100	•	16	1.0	80	150	16	5
VQELCSRBD1600R200	•	16	2.0	80	150	16	5
VQELCSRBD1600R250	*	16	2.5	80	150	16	5
VQELCSRBD1600R300	•	16	3.0	80	150	16	5
VQELCSRBD1600R400	*	16	4.0	80	150	16	5
VQELCSRBD1600R500	•	16	5.0	80	150	16	5
VQELCSRBD1600R600	*	16	6.0	80	150	16	5
VQELCSRBD2000R050	*	20	0.5	100	170	20	5
VQELCSRBD2000R100	•	20	1.0	100	170	20	5
VQELCSRBD2000R200	•	20	2.0	100	170	20	5
VQELCSRBD2000R250	*	20	2.5	100	170	20	5
VQELCSRBD2000R300	•	20	3.0	100	170	20	5
VQELCSRBD2000R400	*	20	4.0	100	170	20	5
VQELCSRBD2000R500	•	20	5.0	100	170	20	5
VQELCSRBD2000R600	*	20	6.0	100	170	20	5

 Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; pertanto, azzeratori utensile a contatto esterno (trasmissione elettrica) potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore del tipo a contatto interno (non elettrico) o del tipo laser.

22

VQELCSRB

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

Materiale	DC	Vc	n	Vf	ар	ae	hm	h max
	6	160	8500	1400	30	0.5	0.007	0.013
	8	160	6400	1400	40	0.6	0.009	0.018
Acciaio al carbonio,	10	160	5100	1300	50	0.8	0.011	0.021
Acciaio legato, acciaio dolce	12	160	4200	1300	60	0.9	0.013	0.025
	16	160	3200	1100	80	1.2	0.014	0.028
P	20	160	2500	950	100	1.5	0.016	0.031
	6	150	8000	1100	30	0.5	0.006	0.011
	8	150	6000	1200	40	0.6	0.008	0.016
Acciaio pretemprato,	10	150	4800	1100	50	0.8	0.009	0.018
acciaio legato per utensili	12	150	4000	1100	60	0.9	0.011	0.022
	16	150	3000	950	80	1.2	0.013	0.026
	20	150	2400	700	100	1.5	0.012	0.024
	6	90	4800	700	30	0.2	0.004	0.009
M Acciai inossidabili austenitici,	8	90	3600	700	40	0.3	0.006	0.012
ferritici e	10	90	2900	600	50	0.4	0.006	0.012
martensitici,	12	90	2400	600	60	0.5	0.008	0.015
S Leghe di titanio	16	90	1800	500	80	0.6	0.008	0.017
	20	90	1400	400	100	0.8	0.009	0.017
	6	80	4200	600	30	0.2	0.004	0.009
	8	80	3200	600	40	0.3	0.006	0.011
Acciai inossidabili temprati,	10	80	2500	600	50	0.4	0.007	0.014
lega di cromo cobalto	12	80	2100	500	60	0.5	0.007	0.014
	16	80	1600	400	80	0.6	0.008	0.015
	20	80	1300	350	100	0.8	0.008	0.016
	6	180	9500	1600	30	0.5	0.007	0.014
	8	180	7200	1600	40	0.6	0.009	0.018
Rame,	10	180	5700	1500	50	0.8	0.011	0.021
Lega di rame	12	180	4800	1500	60	0.9	0.013	0.025
	16	180	3600	1300	80	1.2	0.015	0.029
	20	180	2900	1200	100	1.5	0.017	0.033
	6	25	1300	90	30	0.10	0.001	0.003
	8	25	1000	90	40	0.12	0.002	0.003
C. Lagha registerti el color-	10	25	800	90	50	0.16	0.002	0.004
S Leghe resistenti al calore	12	25	700	80	60	0.18	0.002	0.004
	16	25	500	70	80	0.24	0.003	0.005
	20	25	400	70	100	0.30	0.003	0.007

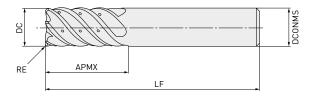
^{1.} Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, gli azzeratori a contatto elettrico potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore a contatto meccanico o laser.

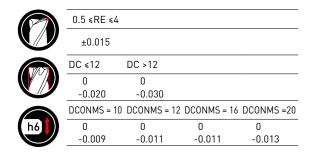
^{2.} La fresa con passo variabile consente un maggiore controllo delle vibrazioni rispetto alle frese standard. Tuttavia, se la rigidità della macchina o del bloccaggio del materiale è ridotta, si possono verificare vibrazioni o rumori anomali. In questo caso regolare il numero di giri, la velocità di avanzamento e la profondità di taglio.

^{3.} È possibile aumentare numero di giri e velocità di avanzamento a fronte di una profondità di taglio minore.

^{4.} Per la lavorazione di acciaio inossidabile, leghe di titanio e leghe resistenti al calore, l'impiego di un refrigerante idrosolubile è efficiente.

VQ6MHVRBCH





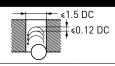
FRESA INTEGRALE TORICA, LUNGHEZZA DI TAGLIO MEDIA, 6 TAGLIENTI, ELICHE VARIABILI, CON FORI INTERNI PER IL PASSAGGIO DEL REFRIGERANTE

• La presenza di molteplici fori per l'adduzione del refrigerante garantisce un'ottimale rimozione dei trucioli, permettendo una lavorazione affidabile sui materiali difficili da tagliare

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	DCONMS	ZEFP
VQ6MHVRBCHD1000R050	<u> </u>	10	0.5	22	70	10	
VQ6MHVRBCHD1000R100	•	10	1	22	70	10	
VQ6MHVRBCHD1200R050	•	12	0.5	26	75	12	
VQ6MHVRBCHD1200R100	•	12	1	26	75	12	
VQ6MHVRBCHD1600R100	•	16	1	32	90	16	<u> </u>
VQ6MHVRBCHD1600R300	•	16	3	32	90	16	. 6
VQ6MHVRBCHD1600R400	•	16	4	32	90	16	
VQ6MHVRBCHD2000R100	•	20	1	38	100	20	
VQ6MHVRBCHD2000R300	•	20	3	38	100	20	
VQ6MHVRBCHD2000R400	•	20	4	38	100	20	

VQ6MHVRBCH

CONDIZIONI DI TAGLIO RACCOMANDATE


FRESATURA IN SPALLAMENTO

	Materiale	DC	n	Vf
		10	4800	2000
	Acciaio inossidabile austenitico(<200 HB), Lega di titanio	12	4000	2000
М		16	3000	1600
		20	2400	1400
		10	1300	260
_	S Leghe resistenti al calore	12	1100	230
S		16	800	180
		20	640	150

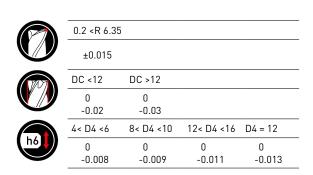
FRESATURA CON METODO TROCOIDALE

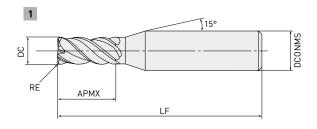
	Materiale	DC	n	Vf
		10	4800	1400
N 4	Acciaio inossidabile austenitico(<200 HB),	12	4000	1200
IVI	Lega di titanio	16	3000	1100
		20	2400	900

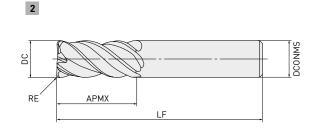
- 1. Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e la velocità di avanzamento.
- 2. L' elica variabile consente un maggiore controllo delle vibrazioni rispetto alle frese con elica regolare.

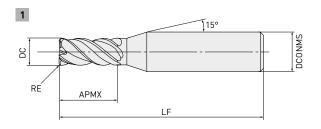
 Tuttavia, se la rigidità della macchina o del bloccaggio del pezzo da lavorare sono molto ridotti, possono verificarsi vibrazioni.

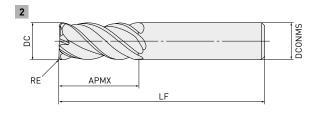
 In questo caso, ridurre proporzionalmente il numero di giri e la velocità di avanzamento.


VQMHVRB




FRESA CON RAGGIO TORICO, LUNGHEZZA TAGLIENTE MEDIA, 4 TAGLIENTI, ELICHE VARIABILI




• Le frese antivibranti VQ permettono una riduzione delle vibrazioni e consentono prestazioni stabili su materiali difficili da tagliare ed applicazioni con elevati sbalzi.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	DCONMS	ZEFP	Tipo
VQMHVRBD0200R020	•	2	0.2	4	45	4	4	1
VQMHVRBD0200R030	•	2	0.3	4	45	4	4	1
VQMHVRBD0300R020	•	3	0.2	8	45	6	4	1
VQMHVRBD0300R030	•	3	0.3	8	45	6	4	1
VQMHVRBD0300R050	•	3	0.5	8	45	6	4	1
VQMHVRBD0400R020	•	4	0.2	11	45	6	4	1
VQMHVRBD0400R030	•	4	0.3	11	45	6	4	1
VQMHVRBD0400R050	•	4	0.5	11	45	6	4	1
VQMHVRBD0500R020	•	5	0.2	13	50	6	4	1
VQMHVRBD0500R030	•	5	0.3	13	50	6	4	1
VQMHVRBD0500R050	•	5	0.5	13	50	6	4	1
VQMHVRBD0500R100	•	5	1	13	50	6	4	1
VQMHVRBD0600R030	•	6	0.3	13	50	6	4	2
VQMHVRBD0600R050	•	6	0.5	13	50	6	4	2
VQMHVRBD0600R100	•	6	1	13	50	6	4	2
VQMHVRBD0800R030	•	8	0.3	19	60	8	4	2
VQMHVRBD0800R050	•	8	0.5	19	60	8	4	2

VQMHVRB - FRESA CON RAGGIO TORICO, LUNGHEZZA TAGLIENTE MEDIA, 4 TAGLIENTI, ELICHE VARIABILI

Codice ordinazione	Disponibilità OD	RE	АРМХ	LF	DCONMS	ZEFP	Tipo
VQMHVRBD0800R100	• 8	1	19	60	8	4	2
VQMHVRBD0800R150	• 8	1.5	19	60	8	4	2
VQMHVRBD1000R030	• 10	0.3	22	70	10	4	2
VQMHVRBD1000R050	• 10	0.5	22	70	10	4	2
VQMHVRBD1000R100	• 10	1	22	70	10	4	2
VQMHVRBD1000R150	• 10	1.5	22	70	10	4	2
VQMHVRBD1000R200	• 10	2	22	70	10	4	2
VQMHVRBD1200R050	• 12	0.5	26	75	12	4	2
VQMHVRBD1200R100	• 12	1	26	75	12	4	2
VQMHVRBD1200R150	• 12	1.5	26	75	12	4	2
VQMHVRBD1200R200	• 12	2	26	75	12	4	2
VQMHVRBD1200R250	• 12	2.5	26	75	12	4	2
VQMHVRBD1200R300	• 12	3	26	75	12	4	2
VQMHVRBD1600R100	• 16	1	35	90	16	4	2
VQMHVRBD1600R150	• 16	1.5	35	90	16	4	2
VQMHVRBD1600R200	• 16	2	35	90	16	4	2
VQMHVRBD1600R250	• 16	2.5	35	90	16	4	2
VQMHVRBD1600R300	• 16	3	35	90	16	4	2
VQMHVRBD1600R400	• 16	4	35	90	16	4	2
VQMHVRBD1600R500	• 16	5	35	90	16	4	2
VQMHVRBD2000R100	• 20	1	45	110	20	4	2
VQMHVRBD2000R150	• 20	1.5	45	110	20	4	2
VQMHVRBD2000R200	• 20	2	45	110	20	4	2
VQMHVRBD2000R250	• 20	2.5	45	110	20	4	2
VQMHVRBD2000R300	• 20	3	45	110	20	4	2
VQMHVRBD2000R400	• 20	4	45	110	20	4	2
VQMHVRBD2000R500	• 20	5	45	110	20	4	2
VQMHVRBD2000R635	• 20	6.35	45	110	20	4	2

28 (Vc)

VQMHVRB

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар	ae
	2	24000	2400	3	0.6
-	3	16000	2600	4.5	0.9
	4	12000	2600	6	1.2
-	5	9500	2500	7.5	1.5
Acciaio al carbonio,	6	8000	2600	9	1.8
Acciaio legato (180 – 280 HB),	8	6000	2500	12	2.4
Acciaio da costruzione	10	4800	2300	15	3
_	12	4000	1900	18	3.6
	16	3000	1600	24	4.8
_	20	2400	1300	30	6
	25	1900	1100	37	7.5
	2	19000	1100	3	0.6
	3	13000	1200	4.5	0.9
_	4	9500	1300	6	1.2
	5	7600	1300	7.5	1.5
Acciaio pretemprato,	6	6400	1300	9	1.8
Acciaio al carbonio,	8	4800	1300	12	2.4
Acciaio legato, Leghe di Acciaio per utensili	10	3800	1200	15	3
	12	3200	1200	18	3.6
	16	2400	960	24	4.8
	20	1900	760	30	6
_	25	1500	600	37	7.5
	2	16000	830	3	0.6
_	3	11000	880	4.5	0.9
	4	8000	900	6	1.2
_	5	6400	900	7.5	1.5
Acciaio austenico, ferritico e	6	5300	1100	9	1.8
acciaio inossidabile martensitico,	8	4000	1200	12	2.4
Lega di titanio	10	3200	1300	15	3
-	12	2700	1200	18	3.6
	16	2000	960	24	4.8
-	20	1600	770	30	6
	25	1300	620	37	7.5
	2	12000	720	3	0.4
Ī	3	8000	770	4.5	0.6
-	4	6000	790	6	0.8
Ī	5	4800	810	7.5	1
-	6	4000	800	9	1.2
Acciai inossidabili temprati, Lega di cromo cobalto	8	3000	840	12	1.6
Lega ul CIOIIIO CODALLO -	10	2400	770	15	2
	12	2000	720	18	2.4
-	16	1500	600	24	3.2
Ī	20	1200	480	30	4
-	25	950	380	37	5

1/2

VQMHVRB - FRESATURA IN SPALLAMENTO - CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар	ae
	2	29000	2900	3	0.6
	3	19000	3000	4.5	0.9
	4	14000	3100	6	1.2
	5	11000	2900	7.5	1.5
	6	9500	3000	9	1.8
Rame, Lega di rame	8	7200	3000	12	2.4
Lega di Fame	10	5700	2700	15	3
	12	4800	2300	18	3.6
	16	3600	1900	24	4.8
	20	2900	1600	30	6
	25	2300	1300	37	7.5
	2	6400	230	3	0.2
	3	4200	240	4.5	0.3
	4	3200	240	6	0.4
	5	2500	240	7.5	0.5
	6	2100	250	9	0.6
S Leghe resistenti al calore	8	1600	260	12	0.8
	10	1300	290	15	1
	12	1100	280	18	1.2
	16	800	200	24	1.6
	20	640	160	30	2
	25	510	130	37.5	2.5

VQMHVRB

FRESATURA IN SPALLAMENTO

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар	ae
	2	19000	1300	3	0.6
	3	13000	1400	4.5	0.9
	4	9500	1400	6	1.2
	5	7600	1300	7.5	1.5
Acciaio al carbonio,	6	6400	1400	9	1.8
Acciaio legato,	8	4800	1300	12	2.4
Acciaio da costruzione	10	3800	1200	15	3
	12	3200	1000	18	3.6
	16	2400	860	24	4.8
	20	1900	680	30	6
	25	1500	390	37.5	7.5
	2	16000	630	3	0.6
	3	11000	700	4.5	0.9
	4	8000	700	6	1.2
	5	6400	710	7.5	1.5
Acciaio pretemprato,	6	5300	700	9	1.8
Acciaio al carbonio, Acciaio legato,	8	4000	740	12	2.4
Leghe di Acciaio per utensili	10	3200	680	15	3
	12	2700	640	18	3.6
	16	2000	530	24	4.8
	20	1600	420	30	6
	25	1300	340	37.5	7.5
	2	13000	450	1.5	0.2
	3	8500	450	2.25	0.3
<mark>1</mark>	4	6400	470	3	0.6
	5	5100	470	4.5	0.9
Acciaio austenico, ferritico e	6	4200	580	6	1.2
acciaio inossidabile martensitico,	8	3200	630	7.5	1.5
Lega di titanio	10	2500	660	9	1.8
	12	2100	610	12	2.4
	16	1600	510	15	3
	20	1300	410	18	3.6
	25	1000	210	24	4.8
	2	11000	440	3	0.4
	3	7400	470	4.5	0.6
	4	5600	490	6	0.8
	5	4500	500	7.5	1
	6	3700	490	9	1.2
Acciai inossidabili temprati, Lega di cromo cobalto	8	2800	520	12	1.6
Lega di cromo cobatto	10	2200	460	15	2
	12	1900	450	18	2.4
	16	1400	370	24	3.2
	20	1100	290	30	4
	25	890	230	37.5	5

VQMHVRB - FRESATURA IN SPALLAMENTO - CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар	ae
	2	22000	1500	3	0.6
	3	15000	1600	4.5	0.9
	4	11000	1600	6	1.2
	5	8900	1500	7.5	1.5
	6	7400	1600	9	1.8
Rame, Lega di rame	8	5600	1600	12	2.4
Lega di Taine	10	4500	1400	15	3
	12	3700	1200	18	3.6
	16	2800	1000	24	4.8
	20	2200	780	30	6
	25	1800	670	37.5	7.5
	2	4800	110	3	0.2
	3	3200	120	4.5	0.3
	4	2400	120	6	0.4
	5	1900	120	7.5	0.5
	6	1600	130	9	0.6
Leghe resistenti al calore	8	1200	130	12	0.8
	10	950	140	15	1
	12	800	140	18	1.2
	16	600	100	24	1.6
	20	480	81	30	2
	25	380	64	37.5	2.5

1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare.

Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

- 2. Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.
- 3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.
- 4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

VQMHVRB

FRESATURA DI CAVE

CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар
	2	24000	1200	2
_	3	16000	1500	3
	4	12000	1900	4
_	5	9500	1900	5
Acciaio al carbonio,	6	8000	1900	6
Acciaio legato,	8	6000	1700	8
Acciaio da costruzione	10	4800	1500	10
_	12	4000	1300	12
	16	3000	1100	12
_	20	2400	860	12
	25	1900	760	12
	2	19000	610	2
	3	13000	730	3
_	4	9500	910	4
	5	7600	910	5
Acciaio pretemprato,	6	6400	1000	6
Acciaio al carbonio,	8	4800	960	8
Acciaio legato, Leghe di acciaio per utensili	10	3800	840	10
_	12	3200	770	12
_	16	2400	670	12
	20	1900	530	12
_	25	1500	420	12
	2	16000	640	2
_	3	11000	660	3
4	4	8000	700	4
- -	5	6400	720	5
Ai-i inid-bilibi	6	5300	740	6
Acciai inossidabili austenico, ferritico e martensitico,	8	4000	800	8
Leghe di titanio	10	3200	900	10
_	12	2700	860	12
	16	2000	640	12
_	20	1600	510	12
_	25	1300	420	12
	2	9500	300	1
_	3	6400	360	1.5
_	4	4800	460	2
_	5	3800	460	2.5
_	6	3200	510	3
Acciai inossidabili temprati,	8	2400	480	4
Lega di cromo cobalto	10	1900	420	<u>4</u> 5
_	12			
_		1600	380	6
_	16	1200	340	8
_	20	950	270	10
	25	760	210	12

VQMHVRB - FRESATURA DI CAVE - CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар
	2	29000	1500	2
	3	19000	1700	3
	4	14000	2200	4
	5	11000	2200	5
	6	9500	2300	6
Rame, Lega di rame	8	7200	2000	8
Lega di rame	10	5700	1800	10
	12	4800	1500	12
	16	3600	1300	12
	20	2900	1000	12
	25	2300	920	12
	2	4800	130	0.6
	3	3200	150	0.9
	4	2400	170	1.2
	5	1900	170	1.5
	6	1600	180	1.8
S Leghe resistenti al calore	8	1200	190	2.4
	10	950	210	3
	12	800	200	3.6
	16	600	150	4.8
	20	480	120	6
	25	380	100	7.5

VQMHVRB

FRESATURA DI CAVE

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар
	2	16000	550	2
	3	11000	670	3
	4	8000	840	4
	5	6400	840	5
Acciaio al carbonio,	6	5300	840	6
Acciaio legato,	8	4000	740	8
Acciaio da costruzione	10	3200	680	10
	12	2700	570	12
	16	2000	480	12
	20	1600	380	12
	25	1300	340	12
P	2	13000	270	2
	3	8500	310	3
	4	6400	410	4
	5	5100	400	5
Acciaio pretemprato,	6	4200	440	6
Acciaio al carbonio,	8	3200	420	8
Acciaio legato, Leghe di acciaio per utensili	10	2500	360	10
Legile di decidio per dicrisia	12	2100	330	12
	16	1600	300	12
	20	1300	240	12
	25	1000	180	12
	2	9500	250	2
-	3	6400	250	3
<mark>u</mark>	4	4800	280	4
···		3800	280	5
	6	3200	300	6
Acciai inossidabili austenico, ferritico e martensitico,	8	2400	320	8
Leghe di titanio	10	1900	350	10
2-3	12	1600	340	12
5	16	1200	250	12
	20	950	200	12
	25	760	160	12
	25	8000	170	12
1	3	5300	200	1.5
	4	4000	250	2
· ·	5			
		3200	250	2.5
Acciai inossidabili temprati,	6	2700	290	3
Lega di cromo cobalto	8	2000	260	4
1	10	1600	230	5
	12	1300	210	6
1	16	990	180	8
	20	800	150	10
	25	640	120	12

VQMHVRB - FRESATURA DI CAVE - CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар
Rame, Lega di rame	2	19000	650	2
	3	13000	790	3
	4	9500	1000	4
	5	7600	1000	5
	6	6400	1000	6
	8	4800	890	8
	10	3800	800	10
	12	3200	680	12
	16	2400	570	12
	20	1900	450	12
	25	1500	400	12
	2	4000	74	0.6
	3	2700	86	0.9
Leghe resistenti al calore	4	2000	93	1.2
	5	1600	95	1.5
	6	1300	96	1.8
	8	990	100	2.4
	10	800	120	3
	12	660	110	3.6
	16	500	84	4.8
	20	400	68	6
	25	320	50	7.5

^{1.} Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

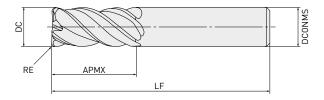
^{2.} Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.

^{3.} Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.

^{4.} Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

VQMHVRBF

FRESA CON RAGGIO TORICO, LUNGHEZZA TAGLIENTE MEDIA, 4 TAGLIENTI, ELICHE VARIABILI



DC <12

DC >12

0	0			
-0.02	-0.03			
D4 = 6	8< D4 <10	12< D4 <16		
0	0	0		
-0.008	-0.009	-0.011		

- Fresa con elica variabile a 4 taglienti per ridotte vibrazioni quando si lavorano materiali difficili da tagliare.
- Ideale per lavorazione di finitura

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	DCONMS	ZEFP
VQMHVRBFD0600R030	•	6	0.3	13	50	6	4
VQMHVRBFD0600R050	•	6	0.5	13	50	6	4
VQMHVRBFD0600R100	•	6	1	13	50	6	4
VQMHVRBFD0800R050	•	8	0.5	19	60	8	4
VQMHVRBFD0800R100	•	8	1	19	60	8	4
VQMHVRBFD1000R030	•	10	0.3	22	70	10	4
VQMHVRBFD1000R050	•	10	0.5	22	70	10	4
VQMHVRBFD1000R100	•	10	1	22	70	10	4
VQMHVRBFD1000R200	•	10	2	22	70	10	4
VQMHVRBFD1200R100	•	12	1	26	75	12	4
VQMHVRBFD1200R200	•	12	2	26	75	12	4
VQMHVRBFD1200R300	•	12	3	26	75	12	4
VQMHVRBFD1600R100	•	16	1	35	90	16	4
VQMHVRBFD1600R200	•	16	2	35	90	16	4

VQMHVRBF

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

Materiale	DC	n	Vf	ар	ae
	6	8000	2600	9	0.3
Acciaio al carbonio,	8	6000	2500	12	0.4
Acciaio legato,	10	4800	2300	15	0.5
Acciaio da costruzione	12	4000	1900	18	0.6
	16	3000	1600	24	0.8
	6	6400	1300	9	0.3
Acciaio pretemprato,	8	4800	1300	12	0.4
Acciaio al carbonio, Acciaio legato,	10	3800	1200	15	0.5
Leghe di Acciaio per utensili	12	3200	1200	18	0.6
	16	2400	960	24	0.8
	6	4000	800	9	0.3
Acciai inossidabili	8	3000	840	12	0.4
temprati,	10	2400	770	15	0.5
Lega di cromo cobalto	12	2000	720	18	0.6
	16	1500	600	24	0.8
	6	9500	3000	9	0.3
	8	7200	3000	12	0.4
Rame, Lega di rame	10	5700	2700	15	0.5
Lega di rame	12	4800	2300	18	0.6
	16	3600	1900	24	0.8
	6	2100	250	9	0.1
	8	1600	260	12	0.2
Leghe resistenti al calore	10	1300	290	15	0.3
	12	1100	280	18	0.3
	16	800	200	24	0.4

VQMHVRBF

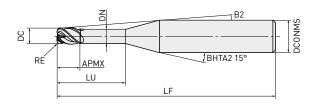
FRESATURA FRONTALE

Materiale	DC	n	Vf	ар	ae
	6	5800	1400	0.3	4.8
Acciaio al carbonio,	8	4400	1200	0.4	6.4
Acciaio legato,	10	3500	1100	0.5	8
Acciaio da costruzione	12	2900	930	0.6	9.6
	16	2200	790	0.8	12.8
	6	4800	770	0.3	4.8
Acciaio pretemprato,	8	3600	720	0.4	6.4
Acciaio al carbonio, Acciaio legato,	10	2900	640	0.5	8
Leghe di Acciaio per utensili	12	2400	580	0.6	9.6
	16	1800	500	0.8	12.8
	6	2900	460	0.3	4.8
Acciai inossidabili	8	2200	440	0.4	6.4
temprati,	10	1800	400	0.5	8
Lega di cromo cobalto	12	1500	360	0.6	9.6
	16	1100	310	0.8	12.8
	6	6900	1700	0.3	4.8
_	8	5200	1500	0.4	6.4
Rame, Lega di rame	10	4100	1300	0.5	8
Lega di Fame	12	3400	1100	0.6	9.6
	16	2600	940	0.8	12.8
	6	1600	180	0.18	4.8
	8	1200	190	0.24	6.4
Leghe resistenti al calore	10	950	210	0.3	8
	12	800	200	0.36	9.6
	16	600	150	0.48	12.8

- 1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare
 - . Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.
- 2. Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.
- 3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti.
- In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.

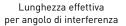
 4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

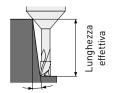
VQHVRB



TORICA, TAGLIENTE CORTO, 4 TAGLIENTI, ELICHE VARIABILI

S


0.1≤ RE ≤1 +0.01



1≼DC≼4 0 -0.020

0 -0.005

Angolo di interferenza

• Fresa integrale torica SMART MIRACLE per elevate velocità di avanzamento e lavorazioni efficienti.

Disponibilità	DC	RE	АРМХ	LF	LU	DN	В2	DCONMS	ZEFP
•	1	0.1	1	50	8	0.94	8.2°	6	4
•	1	0.1	1	55	12	0.94	6.7°	6	4
•	2	0.2	2	55	12	1.9	5.9°	6	4
•	2	0.2	2	60	16	1.9	4.9°	6	4
•	3	0.5	3	55	10	2.9	5.6°	6	4
•	3	0.5	3	60	18	2.9	3.7°	6	4
•	4	1	4	55	12	3.9	3.9°	6	4
•	4	1	4	60	20	3.9	2.5°	6	4
	•	 1 1 2 2 3 3 4 	 1 0.1 1 0.1 2 0.2 2 0.2 3 0.5 3 0.5 4 1 	 1 0.1 1 1 0.1 1 2 0.2 2 2 0.2 2 3 0.5 3 3 0.5 3 4 1 4 	 ● 1 0.1 1 50 ● 1 0.1 1 55 ● 2 0.2 2 55 ● 2 0.2 2 60 ● 3 0.5 3 55 ● 3 0.5 3 60 ● 4 1 4 55 	● 1 0.1 1 50 8 ● 1 0.1 1 55 12 ● 2 0.2 2 55 12 ● 2 0.2 2 60 16 ● 3 0.5 3 55 10 ● 3 0.5 3 60 18 ● 4 1 4 55 12	● 1 0.1 1 50 8 0.94 ● 1 0.1 1 55 12 0.94 ● 2 0.2 2 55 12 1.9 ● 2 0.2 2 60 16 1.9 ● 3 0.5 3 55 10 2.9 ● 3 0.5 3 60 18 2.9 ● 4 1 4 55 12 3.9	● 1 0.1 1 50 8 0.94 8.2° ● 1 0.1 1 55 12 0.94 6.7° ● 2 0.2 2 55 12 1.9 5.9° ● 2 0.2 2 60 16 1.9 4.9° ● 3 0.5 3 55 10 2.9 5.6° ● 3 0.5 3 60 18 2.9 3.7° ● 4 1 4 55 12 3.9 3.9°	● 1 0.1 1 50 8 0.94 8.2° 6 ● 1 0.1 1 55 12 0.94 6.7° 6 ● 2 0.2 2 55 12 1.9 5.9° 6 ● 2 0.2 2 60 16 1.9 4.9° 6 ● 3 0.5 3 55 10 2.9 5.6° 6 ● 3 0.5 3 60 18 2.9 3.7° 6 ● 4 1 4 55 12 3.9 3.9° 6

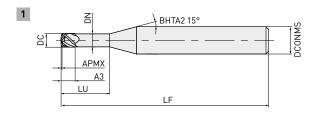
VQHVRB

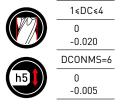
CONDIZIONI DI TAGLIO RACCOMANDATE

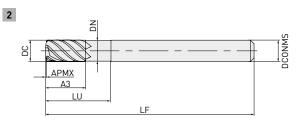
Materiale	DC	LU	n	Vc	Vf	ар	ae
	1	8	2500	8	500	0.030	0.1
	1	12	2500	8	350	0.030	0.1
	2	12	4800	30	600	0.075	0.3
Lagha di titania	2	16	4800	30	340	0.075	0.3
Leghe di titanio	3	10	8500	80	2400	0.190	1.3
	3	18	8500	80	2000	0.190	1.3
	4	12	6400	80	2000	0.250	1.7
	4	20	6400	80	2000	0.250	1.7
	1	8	2500	8	500	0.030	0.1
	1	12	2500	8	350	0.030	0.1
	2	12	4800	30	600	0.075	0.3
Leghe di cromo-cobalto,	2	16	4800	30	350	0.075	0.3
acciai inossidabili temprati per precipitazione	3	10	6400	60	2200	0.170	1.3
p. 55.p.152-15112	3	18	6400	60	1600	0.170	1.3
	4	12	4800	60	1800	0.220	1.7
	4	20	4800	60	1800	0.220	1.7

- 1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, i tastatori a contatto elettrico potrebbero non funzionare.
 - Quando si misura la lunghezza dell'utensile, usare un tastatore di tipo a contatto meccanico o di tipo laser.
- 2. Durante il taglio di leghe di titanio, è particolarmente efficace l'utilizzo di un fluido di taglio non solubile in acqua.
- 3. Se la profondità di taglio è inferiore, è possibile aumentare il numero di giri e la velocità di avanzamento.
- 4. La fresa integrale con elica variabile consente un maggiore controllo delle vibrazioni rispetto alle frese integrali standard. Tuttavia, se la rigidità della macchina o lo staffaggio del pezzo da lavorare è ridotta, si possono riscontrare vibrazioni o rumori anomali. In questo caso ridurre proporzionalmente il numero di giri e la velocità di avanzamento oppure impostare una profondità di taglio inferiore.

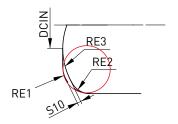
VQFDRB






FRESA INTEGRALE TORICA A DOPPIO RAGGIO PER TAGLIO AD ALTO AVANZAMENTO

S



- La tipologia di fresa integrale torica a doppio raggio consente una velocità di avanzamento più elevata ed una maggior efficienza.
- Taglio ad alto avanzamento realizzato mediante l'impiego di più taglienti.

Codice ordinazione III DC RE1 APMX LF A3 LU VQFDRBD0300N080 ● 3 0.64 0.18 50 3 8 VQFDRBD0300N120 ● 3 0.64 0.18 55 3 12 VQFDRBD0400N120 ● 4 0.71 0.25 55 4 12	DN 2.8	DCONMS 6	ZEFP 4	RMPX	S10	DCIN	RE2	RE3	_ odiT
VQFDRBD0300N120 • 3 0.64 0.18 55 3 12	2.8	6	/1	0.1					F
			4	2.1	0.08	0.75	0.5	2	1
VOEDBBD0/00N120	2.8	6	4	2.1	0.08	0.75	0.5	2	1
₩ 4 0.71 0.23 33 4 12	3.8	6	4	1.9	0.13	1	0.5	3	1
VQFDRBD0400N160 ● 4 0.71 0.25 60 4 16	3.8	6	4	1.9	0.13	1	0.5	3	1
VQFDRBD0600N180 ● 6 0.92 0.36 60 6 18	5.6	6	4	1.7	0.21	1.5	0.6	5	2

VQFDRB

CONDIZIONI DI TAGLIO RACCOMANDATE

	Materiale	DC	n	Vc	Vf	ар	ae
	Leghe di titanio	3	8500	80	2100	0.2	1.3
		4	6400	80	2200	0.2	1.7
		6	4200	80	1400	0.3	2.0
	Leghe di cromo-cobalto,	3	6400	60	3000	0.2	1.3
S	acciai inossidabili temprati per	4	4800	60	2700	0.2	1.7
	precipitazione	6	3200	60	2100	0.3	2.6
		3	3200	30	770	0.2	0.6
	Leghe resistenti al calore	4	2400	30	770	0.2	0.8
		6	1600	30	520	0.3	1.3
							1/1

^{1.} Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, gli azzeratori a contatto elettrico

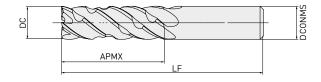
Quando si misura la lunghezza dell'utensile, usare un tastatore di tipo a contatto meccanico o di tipo laser.

^{2.} Durante il taglio di leghe di titanio, è particolarmente efficace l'utilizzo di fluido di taglio non solubile in acqua.

3. Se la profondità di taglio è inferiore, è possibile aumentare il numero di giri e la velocità di avanzamento.

VQJCS

FRESA, LUNGHEZZA DI TAGLIO SEMILUNGA (3 x DC), 5 TAGLIENTI, PASSO VARIABILE, ROMPITRUCIOLO



DC≤12	DC>12		
0	0		
-0.030	-0.040		

DCONMS=6	DCONMS=8, 10	DCONMS=12	DCONMS=16	DCONMS=20
0	0	0	0	0
-0.005	-0.006	-0.008	-0.011	-0.013

- Fresa con rompitruciolo per una rottura efficiente del truciolo per ottenere superfici con una buona finitura.
- Fresa antivibrante ad elevata rigidità con rivestimento SMART MIRACLE per una fresatura trocoidale estremamente efficiente.

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP
VQJCSD0600	•	6	18	70	6	
VQJCSD0800	•	8	24	80	8	-
VQJCSD1000	•	10	30	90	10	_
VQJCSD1200	•	12	36	100	12	- 5
VQJCSD1600	•	16	48	110	16	
VQJCSD2000	•	20	60	125	20	-

1. Rivolgersi al nostro reparto tecnico se sull'utensile è richiesto un piano Weldon per il bloccaggio sul mandrino.

VQJCS

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

	Materiale	DC	Vc	n	Vf	ар	ae	hm	h max
		6	200	10600	1800	18	0.9	0.010	0.019
		8	200	8000	1800	24	1.2	0.013	0.025
	Acciaio al carbonio,	10	200	6400	1700	30	1.5	0.016	0.029
	Acciaio legato, acciaio dolce	12	200	5300	1700	36	1.8	0.019	0.035
		16	200	4000	1400	48	2.4	0.020	0.039
Р		20	200	3200	1200	60	3.0	0.023	0.043
Р		6	180	9500	1500	18	0.9	0.009	0.017
	Acciaio pretemprato,	8	180	7200	1500	24	1.2	0.012	0.023
	acciaio preterriprato,	10	180	5700	1400	30	1.5	0.015	0.028
	Acciaio legato,	12	180	4800	1400	36	1.8	0.017	0.032
	acciaio legato per utensili	16	180	3600	1200	48	2.4	0.018	0.035
		20	180	2900	1000	60	3.0	0.021	0.039
		6	120	6400	1000	18	0.45	0.006	0.012
М	Acciai inossidabili austenitici, ferritici e	8	120	4800	1000	24	0.6	0.008	0.016
	martensitici,	10	120	3800	900	30	0.75	0.010	0.019
		12	120	3200	800	36	0.9	0.011	0.021
S	Leghe di titanio	16	120	2400	700	48	1.2	0.012	0.023
	259.16 a. t.ta5	20	120	1900	600	60	1.5	0.013	0.026
		6	100	5300	800	18	0.45	0.006	0.012
		8	100	4000	800	24	0.6	0.008	0.016
	Acciai inossidabili temprati,	10	100	3200	800	30	0.75	0.01	0.019
IVI	lega di cromo cobalto	12	100	2700	700	36	0.9	0.011	0.021
		16	100	2000	600	48	1.2	0.012	0.023
		20	100	1600	500	60	1.5	0.013	0.026
		6	220	11700	2100	18	0.9	0.010	0.019
		8	220	8800	2100	24	1.2	0.014	0.026
NI	Rame,	10	220	7000	1800	30	1.5	0.015	0.028
IN	Lega di rame	12	220	5800	1800	36	1.8	0.018	0.034
		16	220	4400	1500	48	2.4	0.020	0.038
		20	220	3500	1400	60	3.0	0.022	0.042
		6	40	2100	200	18	0.18	0.002	0.004
		8	40	1600	200	24	0.24	0.003	0.006
S	Leghe resistenti al calore	10	40	1300	200	30	0.3	0.003	0.007
3	Legne resistenti di Calure	12	40	1100	100	36	0.36	0.003	0.007
		16	40	800	100	48	0.48	0.004	0.007
		20	40	600	100	60	0.6	0.004	0.007

^{1.} Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, gli azzeratori a contatto elettrico potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore a contatto meccanico o laser.

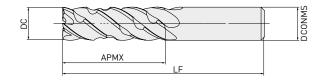
^{2.} La fresa con passo variabile consente un maggiore controllo delle vibrazioni rispetto alle frese standard. Tuttavia, se la rigidità della macchina o del bloccaggio del materiale è ridotta, si possono verificare vibrazioni o rumori anomali. In questo caso regolare il numero di giri, la velocità di avanzamento e la profondità di taglio.

^{3.} È possibile aumentare numero di giri e velocità di avanzamento a fronte di una profondità di taglio minore.

^{4.} In caso di acciaio inossidabile, leghe di titanio e leghe resistenti al calore, l'impiego di un refrigerante idrosolubile è efficiente.

VQLCS

FRESA, LUNGHEZZA DI TAGLIO LUNGA (4 x DC), 5 TAGLIENTI, PASSO VARIABILE, ROMPITRUCIOLO



DC≤12	DC>12	
0	0	
-0.030	-0.040	

DCONMS=6	DCONMS=8, 10	DCONMS=12	DCONMS=16	DCONMS=20
0	0	0	0	0
-0.005	-0.006	-0.008	-0.011	-0.013

- Fresa con rompitruciolo per una rottura efficiente del truciolo per ottenere superfici con una buona finitura.
- Fresa antivibrante ad elevata rigidità con rivestimento SMART MIRACLE per una fresatura trocoidale estremamente efficiente.

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP
VQLCSD0600	•	6	24	70	6	
VQLCSD0800	•	8	32	90	8	-
VQLCSD1000	•	10	40	100	10	_
VQLCSD1200	•	12	48	110	12	- 5
VQLCSD1600	•	16	64	130	16	
VQLCSD2000	•	20	80	150	20	-

1. Rivolgersi al nostro reparto tecnico se sull'utensile è richiesto un piano Weldon per il bloccaggio sul mandrino.

VQLCS

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

	Materiale	DC	Vc	n	Vf	ар	ae	hm	h max
		6	180	9500	1600	24	0.6	0.008	0.015
		8	180	7200	1600	32	0.8	0.010	0.020
	Acciaio al carbonio,	10	180	5700	1500	40	1.0	0.012	0.023
	Acciaio legato, acciaio dolce	12	180	4800	1500	48	1.2	0.015	0.028
		16	180	3600	1300	64	1.6	0.017	0.033
Р		20	180	2900	1100	80	2.0	0.018	0.035
Ρ		6	160	8500	1200	24	0.6	0.007	0.013
	Acciaio pretemprato, acciaio al carbonio, Acciaio legato, acciaio legato per utensili	8	160	6400	1300	32	0.8	0.009	0.018
		10	160	5100	1200	40	1.0	0.011	0.022
		12	160	4200	1200	48	1.2	0.013	0.025
		16	160	3200	1000	64	1.6	0.015	0.028
		20	160	2500	800	80	2.0	0.015	0.029
		6	100	5300	800	24	0.3	0.005	0.010
М	Acciai inossidabili austenitici,	8	100	4000	800	32	0.4	0.006	0.013
	ferritici e martensitici,	10	100	3200	700	40	0.5	0.008	0.015
		12	100	2700	700	48	0.6	0.008	0.017
S	Leghe di titanio	16	100	2100	600	64	0.8	0.010	0.019
		20	100	1600	500	80	1.0	0.011	0.021
		6	90	4800	700	24	0.3	0.005	0.010
		8	90	3600	700	32	0.4	0.006	0.013
М	Acciai inossidabili temprati,	10	90	2900	700	40	0.5	0.008	0.015
IVI	lega di cromo cobalto	12	90	2400	600	48	0.6	0.008	0.016
		16	90	1800	500	64	0.8	0.009	0.019
		20	90	1400	400	80	1.0	0.010	0.019
		6	200	10600	1800	24	0.6	0.008	0.015
		8	200	8000	1800	32	0.8	0.011	0.020
N	Rame,	10	200	6400	1600	40	1.0	0.012	0.022
IN	Lega di rame	12	200	5300	1600	48	1.2	0.014	0.027
		16	200	4000	1400	64	1.6	0.017	0.032
		20	200	3200	1300	80	2.0	0.019	0.037
		6	30	1600	100	24	0.12	0.002	0.003
		8	30	1200	100	32	0.16	0.002	0.004
S	Leghe resistenti al calore	10	30	1000	100	40	0.20	0.003	0.005
3	Legne resistenti di Calure	12	30	800	100	48	0.24	0.003	0.005
		16	30	600	80	64	0.32	0.003	0.006
		20	30	500	80	80	0.40	0.003	0.007

^{1.} Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, gli azzeratori a contatto elettrico potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore a contatto meccanico o laser.

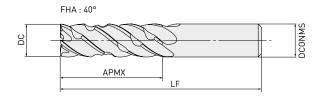
^{2.} La fresa con passo variabile consente un maggiore controllo delle vibrazioni rispetto alle frese standard. Tuttavia, se la rigidità della macchina o del bloccaggio del materiale è ridotta, si possono verificare vibrazioni o rumori anomali. In questo caso regolare il numero di giri, la velocità di avanzamento e la profondità di taglio.

^{3.} È possibile aumentare numero di giri e velocità di avanzamento a fronte di una profondità di taglio minore.

^{4.} Per la lavorazione di acciaio inossidabile, leghe di titanio e leghe resistenti al calore, l'impiego di un refrigerante idrosolubile è efficiente.

VQELCS

FRESA, LUNGHEZZA TAGLIENTE EXTRALUNGA, 5 TAGLIENTI, ELICHE VARIABILI, ROMPITRUCIOLO



DC≤12	DC>12	
0	0	
-0.030	-0.040	

0.000	0.040			
DCONMS=6	DCONMS=8, 10	DCONMS=12	DCONMS=16	DCONMS=20
0 -0.005	0	0 -0.008	0 -0 011	0 -0.013
-0.003	-0.000	-0.000	-0.011	-0.013

- Fresa con rompitruciolo per una rottura efficiente del truciolo per ottenere superfici con una buona finitura.
- Fresa antivibrante ad elevata rigidità con rivestimento SMART MIRACLE per una fresatura trocoidale estremamente efficiente.

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP
VQELCSD0600	•	6	30	80	6	
VQELCSD0800	•	8	40	100	8	
VQELCSD1000	•	10	50	110	10	5
VQELCSD1200	•	12	60	125	12	5
VQELCSD1600	•	16	80	150	16	
VQELCSD2000	•	20	100	170	20	

1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; pertanto, azzeratori utensile a contatto esterno (trasmissione elettrica) potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore del tipo a contatto interno (non elettrico) o del tipo laser.

VQELCS

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

Materiale	DC	Vc	n	Vf	ар	ae	hm	h max
	6	160	8500	1400	30	0.5	0.007	0.013
	8	160	6400	1400	40	0.6	0.009	0.018
Acciaio al carbonio,	10	160	5100	1300	50	0.8	0.011	0.021
Acciaio legato, acciaio dolce	12	160	4200	1300	60	0.9	0.013	0.025
	16	160	3200	1100	80	1.2	0.014	0.028
P	20	160	2500	950	100	1.5	0.016	0.031
	6	150	8000	1100	30	0.5	0.006	0.011
	8	150	6000	1200	40	0.6	0.008	0.016
Acciaio pretemprato,	10	150	4800	1100	50	0.8	0.009	0.018
acciaio legato per utensili	12	150	4000	1100	60	0.9	0.011	0.022
	16	150	3000	950	80	1.2	0.013	0.026
	20	150	2400	700	100	1.5	0.012	0.024
	6	90	4800	700	30	0.2	0.004	0.009
M Acciai inossidabili austenitici,	8	90	3600	700	40	0.3	0.006	0.012
ferritici e	10	90	2900	600	50	0.4	0.006	0.012
martensitici,	12	90	2400	600	60	0.5	0.008	0.015
S Leghe di titanio	16	90	1800	500	80	0.6	0.008	0.017
	20	90	1400	400	100	0.8	0.009	0.017
	6	80	4200	600	30	0.2	0.004	0.009
	8	80	3200	600	40	0.3	0.006	0.011
Acciai inossidabili temprati,	10	80	2500	600	50	0.4	0.007	0.014
lega di cromo cobalto	12	80	2100	500	60	0.5	0.007	0.014
	16	80	1600	400	80	0.6	0.008	0.015
	20	80	1300	350	100	0.8	0.008	0.016
	6	180	9500	1600	30	0.5	0.007	0.014
	8	180	7200	1600	40	0.6	0.009	0.018
Rame,	10	180	5700	1500	50	0.8	0.011	0.021
Lega di rame	12	180	4800	1500	60	0.9	0.013	0.025
	16	180	3600	1300	80	1.2	0.015	0.029
	20	180	2900	1200	100	1.5	0.017	0.033
	6	25	1300	90	30	0.10	0.001	0.003
	8	25	1000	90	40	0.12	0.002	0.003
S Leghe resistenti al calore	10	25	800	90	50	0.16	0.002	0.004
S Leghe resistenti al calore	12	25	700	80	60	0.18	0.002	0.004
	16	25	500	70	80	0.24	0.003	0.005
	20	25	400	70	100	0.30	0.003	0.007

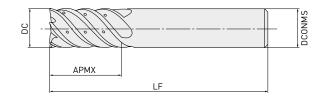
^{1.} Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, gli azzeratori a contatto elettrico potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore a contatto meccanico o laser.

^{2.} La fresa con passo variabile consente un maggiore controllo delle vibrazioni rispetto alle frese standard. Tuttavia, se la rigidità della macchina o del bloccaggio del materiale è ridotta, si possono verificare vibrazioni o rumori anomali. In questo caso regolare il numero di giri, la velocità di avanzamento e la profondità di taglio.

^{3.} È possibile aumentare numero di giri e velocità di avanzamento a fronte di una profondità di taglio minore.

^{4.} Per la lavorazione di acciaio inossidabile, leghe di titanio e leghe resistenti al calore, l'impiego di un refrigerante idrosolubile è efficiente.

VQ6MHVCH



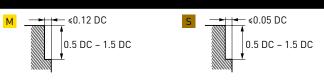
FRESA INTEGRALE, LUNGHEZZA DI TAGLIO MEDIA, 6 TAGLIENTI, ELICHE VARIABILI, CON FORI INTERNI PER IL PASSAGGIO DEL REFRIGERANTE

1	DC ≤12	DC >12	
,	0 -0.020	0 -0.030	

DCONMS = 10	DCONMS = 12	DCONMS = 16	DCONMS = 20
0-0.009	0 -0.011	0 -0.011	0 -0.013

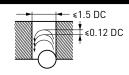
• La presenza di molteplici fori per l'adduzione del refrigerante garantisce un'ottimale rimozione dei trucioli, permettendo una lavorazione affidabile sui materiali difficili da tagliare

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP
VQ6MHVCHD1000	•	10	22	70	10	
VQ6MHVCHD1200	•	12	26	75	12	_
VQ6MHVCHD1600	•	16	32	90	16	- 6
VQ6MHVCHD2000	•	20	38	100	20	_



VQ6MHVCH

CONDIZIONI DI TAGLIO RACCOMANDATE


Fresatura in spallamento

	Materiale	DC	n	Vf
N		10	4800	2000
M	Acciaio inossidabile austenitico (<200 HB),	12	4000	2000
_	Lega di titanio	16	3000	1600
5		20	2400	1400
		10	1300	260
_	Lamba registanti el colore	12	1100	230
S	Leghe resistenti al calore	16	800	180
		20	640	150

Fresatura con metodo trocoidale

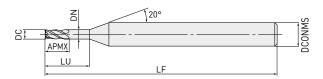
	Materiale	DC	n	Vf
		10	4800	1400
ľ	Acciaio inossidabile austenitico (<200 HB),	12	4000	1200
	Lega di titanio	16	3000	1100
	, and the second	20	2400	900

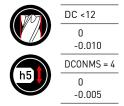
- 1. Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e la velocità di avanzamento.
- 2. L' elica variabile consente un maggiore controllo delle vibrazioni rispetto alle frese con elica regolare.

 Tuttavia, se la rigidità della macchina o del bloccaggio del pezzo da lavorare sono molto ridotti, possono verificarsi vibrazioni.

 In questo caso, ridurre proporzionalmente il numero di giri e la velocità di avanzamento.

FRESA CON LUNGHEZZA TAGLIENTE CORTA, 4 TAGLIENTI, PER LAVORAZIONI PROFONDE





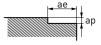
- Efficienza migliorata grazie ad un superiore controllo truciolo adottando il rivestimento VQ.
- Un maggior numero di taglienti consente un'elevata efficienza ed una vita utensile maggiore.

Codice ordinazione	Disponibilità	DC	АРМХ	LF	LU	DN	DCONMS	ZEFP
VQXLD0020N006	•	0.2	0.3	40	0.6	0.18	4	3
VQXLD0030N009	•	0.3	0.5	40	0.9	0.28	4	3
VQXLD0030N015	•	0.3	0.5	40	1.5	0.28	4	3
VQXLD0040N010	•	0.4	0.6	40	1	0.37	4	4
VQXLD0040N018	•	0.4	0.6	40	1.8	0.37	4	4
VQXLD0050N015	•	0.5	0.7	40	1.5	0.46	4	4
VQXLD0050N025	•	0.5	0.7	40	2.5	0.46	4	4
VQXLD0050N030	•	0.5	0.7	40	3	0.46	4	4
VQXLD0060N030	•	0.6	0.9	40	3	0.57	4	4
VQXLD0070N035	•	0.7	1	40	3.5	0.67	4	4
VQXLD0080N024	•	0.8	1.2	40	2.4	0.77	4	4
VQXLD0080N030	•	0.8	1.2	40	3	0.77	4	4
VQXLD0080N040	•	0.8	1.2	40	4	0.77	4	4
VQXLD0100N050	•	1	1.5	40	5	0.96	4	4

2 (Vc

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO


Materiale	DC	LU	n	Vf	ар	ae
	0.2	0.6	40000	360	0.03	0.01
P	0.3	0.9	40000	480	0.04	0.01
	0.3	1.5	40000	360	0.04	0.01
	0.4	1.2	40000	800	0.06	0.02
Acciaio al carbonio, Acciaio legato,	0.4	2	40000	560	0.06	0.02
Acciaio dolce,	0.5	1.5	38000	910	0.07	0.02
Leghe di acciaio per utensili,	0.5	2.5	38000	610	0.07	0.02
Acciaio inossidabile austenico, Leghe di titanio	0.5	3	38000	550	0.07	0.02
Lega cromo cobalto,	0.6	3	32000	640	0.09	0.03
Rame,	0.7	3.5	27000	650	0.11	0.03
Lega di rame	0.8	2.4	24000	960	0.12	0.04
S .	0.8	3	24000	860	0.12	0.04
	0.8	4	24000	670	0.12	0.04
	1	5	20000	800	0.15	0.05
	0.2	0.6	32000	290	0.03	0.01
	0.3	0.9	21000	250	0.04	0.01
	0.3	1.5	21000	190	0.04	0.01
	0.4	1.2	16000	320	0.06	0.02
	0.4	2	16000	220	0.06	0.02
	0.5	1.5	13000	310	0.07	0.02
Leghe resistenti al calore, Acciaio pretemprato,	0.5	2.5	13000	210	0.07	0.02
Acciaio pretemprato, Acciaio temprato	0.5	3	13000	180	0.07	0.02
·	0.6	3	10500	210	0.09	0.03
	0.7	3.5	9100	200	0.11	0.03
	0.8	2.4	8000	260	0.12	0.04
	0.8	3	8000	230	0.12	0.04
	0.8	4	8000	190	0.12	0.04
	1	5	6500	210	0.15	0.05

52

FRESATURA FRONTALE

Materiale	DC	LU	n	Vf	ар	ae
	0.2	0.6	40000	360	0.01	<0.2
	0.3	0.9	40000	480	0.02	<0.3
	0.3	1.5	40000	360	0.02	<0.3
	0.4	1.2	40000	800	0.03	<0.4
Acciaio al carbonio, Acciaio legato,	0.4	2	40000	560	0.02	<0.4
Acciaio dolce,	0.5	1.5	38000	910	0.04	<0.5
Leghe di acciaio per utensili,	0.5	2.5	38000	610	0.03	<0.5
Acciaio inossidabile austenico, Leghe di titanio	0.5	3	38000	550	0.03	<0.5
Lega cromo cobalto,	0.6	3	32000	640	0.03	<0.6
Rame,	0.7	3.5	27000	640	0.03	<0.7
Lega di rame	0.8	2.4	24000	960	0.06	<0.8
	0.8	3	24000	840	0.05	<0.8
	0.8	4	24000	670	0.04	<0.8
	1	5	20000	800	0.05	<1
	0.2	0.6	32000	290	0.015	<0.1
	0.3	0.9	21000	250	0.025	<0.1
	0.3	1.5	21000	190	0.02	<0.1
	0.4	1.2	16000	320	0.03	<0.2
	0.4	2	16000	220	0.02	<0.2
	0.5	1.5	13000	310	0.04	<0.2
Leghe resistenti al calore,	0.5	2.5	13000	210	0.03	<0.2
Acciaio pretemprato, Acciaio temprato	0.5	3	13000	180	0.03	<0.2
Accidio temprato	0.6	3	10500	210	0.035	<0.3
	0.7	3.5	9100	190	0.035	<0.3
	0.8	2.4	8000	260	0.06	<0.4
	0.8	3	8000	230	0.05	<0.4
	0.8	4	8000	190	0.04	<0.4
	1	5	6500	210	0.05	<0.5

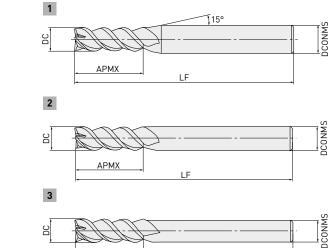
^{1.} Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

^{2.} Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.

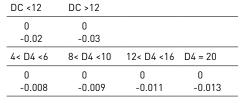
^{3.} Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.

FRESATURA DI CAVE

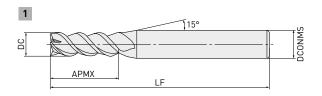
Materiale	DC	LU	n	Vf	ар
	0.2	0.6	30000	270	0.03
	0.3	0.9	30000	360	0.04
	0.3	1.5	30000	270	0.04
Acciaio al carbonio,	0.4	1.2	30000	600	0.06
Acciaio al carbonio, Acciaio legato,	0.4	2	30000	420	0.06
Acciaio dolce,	0.5	1.5	28000	670	0.07
Leghe di acciaio per utensili,	0.5	2.5	28000	450	0.07
Acciaio inossidabile austenico, Leghe di titanio	0.5	3	28000	390	0.07
Lega cromo cobalto,	0.6	3	24000	480	0.09
Rame,	0.7	3.5	20000	480	0.1
Lega di rame	0.8	2.4	18000	720	0.1
	0.8	3	18000	650	0.1
	0.8	4	18000	500	0.1
	1	5	15000	600	0.1
	0.2	0.6	24000	220	0.03
	0.3	0.9	15000	180	0.04
	0.3	1.5	15000	140	0.04
	0.4	1.2	12000	240	0.06
	0.4	2	12000	170	0.06
	0.5	1.5	9500	230	0.07
Leghe resistenti al calore,	0.5	2.5	9500	150	0.07
Acciaio pretemprato, Acciaio temprato	0.5	3	9500	130	0.07
, iosiaio tomprato	0.6	3	7800	160	0.09
	0.7	3.5	6800	140	0.1
	0.8	2.4	6000	190	0.1
	0.8	3	6000	170	0.1
	0.8	4	6000	140	0.1
	1	5	4800	150	0.1

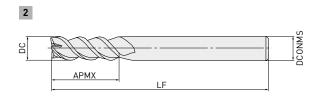


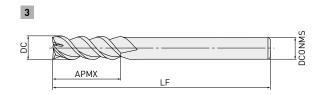
- 1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare
 - Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.
- 2. Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.
- 3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.


FRESA CON LUNGHEZZA TAGLIENTE MEDIA, 3 TAGLIENTI PER FRESATURA A TUFFO E FRESATURA DI CAVE

APMX




- Fresa a 3 taglienti per la fresatura di cave e la fresatura a tuffo.
- Geometria ad elica variabile per ridurre le vibrazioni.


Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
VQMHZVD0100	•	1	2	45	4	3	1
VQMHZVD0110	•	1.1	2.2	45	4	3	1
VQMHZVD0120	•	1.2	2.4	45	4	3	1
VQMHZVD0130	•	1.3	2.6	45	4	3	1
VQMHZVD0140	•	1.4	2.8	45	4	3	1
VQMHZVD0150	•	1.5	3	45	4	3	1
VQMHZVD0160	•	1.6	3.2	45	4	3	1
VQMHZVD0170	•	1.7	3.4	45	4	3	1
VQMHZVD0180	•	1.8	3.6	45	4	3	1
VQMHZVD0190	•	1.9	3.8	45	4	3	1
VQMHZVD0200	•	2	4	50	6	3	1
VQMHZVD0210	•	2.1	4.2	50	6	3	1
VQMHZVD0220	•	2.2	4.4	50	6	3	1
VQMHZVD0230	•	2.3	4.6	50	6	3	1
VQMHZVD0240	•	2.4	4.8	50	6	3	1
VQMHZVD0250	•	2.5	5	50	6	3	1
VQMHZVD0260	•	2.6	5.2	50	6	3	1
VQMHZVD0270	•	2.7	5.4	50	6	3	1
VQMHZVD0280	•	2.8	5.6	50	6	3	1
VQMHZVD0290	•	2.9	5.8	50	6	3	1
VQMHZVD0300	•	3	6	50	6	3	1
							1/2

VQMHZV – FRESA CON LUNGHEZZA TAGLIENTE MEDIA, 3 TAGLIENTI PER FRESATURA A TUFFO E FRESATURA DI CAVE

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
VQMHZVD0310	•	3.1	7	50	6	3	1
VQMHZVD0320	•	3.2	7	50	6	3	1
VQMHZVD0330	•	3.3	7	50	6	3	1
VQMHZVD0340	•	3.4	7	50	6	3	1
VQMHZVD0350	•	3.5	8	50	6	3	1
VQMHZVD0360	•	3.6	8	50	6	3	1
VQMHZVD0370	•	3.7	8	50	6	3	1
VQMHZVD0380	•	3.8	8	50	6	3	1
VQMHZVD0390	•	3.9	8	50	6	3	1
VQMHZVD0400	•	4	8	50	6	3	1
VQMHZVD0450	•	4.5	10	50	6	3	1
VQMHZVD0500	•	5	10	50	6	3	1
VQMHZVD0550	•	5.5	13	50	6	3	1
VQMHZVD0600	•	6	13	60	6	3	2
VQMHZVD0650	•	6.5	16	60	8	3	1
VQMHZVD0700	•	7	16	60	8	3	1
VQMHZVD0750	•	7.5	16	60	8	3	1
VQMHZVD0800	•	8	19	70	8	3	2
VQMHZVD0850	•	8.5	19	70	10	3	1
VQMHZVD0900	•	9	19	70	10	3	1
VQMHZVD0950	•	9.5	19	70	10	3	1
VQMHZVD1000	•	10	22	80	10	3	2
VQMHZVD1100	•	11	22	80	12	3	1
VQMHZVD1200	•	12	26	90	12	3	2
VQMHZVD1300	•	13	26	90	12	3	3
VQMHZVD1400	•	14	26	90	12	3	3
VQMHZVD1500	•	15	26	110	16	3	1
VQMHZVD1600	•	16	30	110	16	3	2
VQMHZVD2000	•	20	32	140	20	3	2

57 (Vc)

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар	ae
	1	32000	720	1.5	0.2
	1.5	28000	1300	2.2	0.3
	2	24000	1800	3	0.6
	3	16000	1900	4.5	0.9
	4	12000	2000	6	1.2
Acciaio al carbonio,	5	9500	1900	7.5	1.5
Acciaio legato, Acciaio da costruzione	6	8000	1900	9	1.8
Accidio da costi azione	8	6000	1900	12	2.4
	10	4800	1700	15	3
	12	4000	1400	18	3.6
	16	3000	1200	24	4.8
P	20	2400	970	30	6
	1	25000	530	1.5	0.2
	1.5	21000	630	2.2	0.3
	2	19000	860	3	0.6
	3	13000	940	4.5	0.9
Acciaio pretemprato,	4	9500	940	6	1.2
Acciaio al carbonio,	5	7600	960	7.5	1.5
Acciaio legato, Leghe di acciaio per utensili	6	6400	960	9	1.8
	8	4800	1000	12	2.4
	10	3800	910	15	3
	12	3200	860	18	3.6
	16	2400	720	24	4.8
	20	1900	570	30	6
	1	19000	430	1.5	0.2
	1.5	18000	540	2.2	0.3
M	2	16000	620	3	0.6
171	3	11000	660	4.5	0.9
Assisis sustanias familias s	4	8000	670	6	1.2
Acciaio austenico, ferritico e acciaio inossidabile martensitico,	5	6400	670	7.5	1.5
Lega di titanio	6	5300	830	9	1.8
	8	4000	900	12	2.4
S	10	3200	960	15	3
	12	2700	890	18	3.6
	16	2000	720	24	4.8
	20	1600	580	30	6
	1	16000	340	1.5	0.1
	1.5	14000	420	2.2	0.1
	2	12000	540	3	0.4
	3	8000	580	4.5	0.6
	4	6000	590	6	0.8
Acciai inossidabili temprati,	5	4800	600	7.5	1
Lega di cromo cobalto	6	4000	600	9	1.2
	8	3000	630	12	1.6
	10	2400	580	15	2
	12	2000	540	18	2.4
	16	1500	450	24	3.2
	20	1200	360	30	4 1/1

ae

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар	ae
	1	32000	480	1.5	0.2
	1.5	25000	740	2.2	0.3
	2	19000	940	3	0.6
	3	13000	1000	4.5	0.9
	4	9500	1000	6	1.2
Acciaio al carbonio,	5	7600	980	7.5	1.5
Acciaio legato Acciaio da costruzione	6	6400	1000	9	1.8
	8	4800	1000	12	2.4
	10	3800	900	15	3
	12	3200	760	18	3.6
	16	2400	640	24	4.8
P	20	1900	510	30	6
	1	25000	350	1.5	0.2
	1.5	21000	420	2.2	0.3
	2	16000	480	3	0.6
	3	11000	520	4.5	0.9
Acciaio pretemprato,	4	8000	520	6	1.2
Acciaio pretemprato, Acciaio al carbonio,	5	6400	530	7.5	1.5
Acciaio legato,	6	5300	520	9	1.8
Leghe di Acciaio per utensili	8	4000	550	12	2.4
	10	3200	510	15	3
	12	2700	480	18	3.6
	16	2000	400	24	4.8
	20	1600	320	30	6
	1	19000	280	1.5	0.2
	1.5	17000	340	2.2	0.3
<mark></mark>	2	13000	330	3	0.6
M	3	8500	340	4.5	0.9
	4	6400	350	6	1.2
Acciaio austenico, ferritico e	5	5100	350	7.5	1.5
acciaio inossidabile martensitico, Lega di titanio	6	4200	290	9	1.8
•	8	3200	310	12	2.4
S	10	2500	500	15	3
5	12	2100	460	18	3.6
	16	1600	250	24	4.8
	20	1300	200	30	6

VQMHZV - CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар	ae
Plateriate	50		•1	ар	ac
	1	16000	220	1.5	0.1
	1.5	14000	280	2.2	0.1
	2	11000	330	3	0.4
	3	7400	350	4.5	0.6
	4	5600	370	6	0.8
Acciai inossidabili temprati,	5	4500	370	7.5	1
Lega di cromo cobalto	6	3700	370	9	1.2
	8	2800	390	12	1.6
	10	2200	350	15	2
	12	1900	340	18	2.4
	16	1400	280	24	3.2
	20	1100	220	30	4

- 1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare.
 - Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.
- 2. Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.
- 3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.
- 4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

FRESATURA IN SPALLAMENTO CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар	ae
	1	38000	860	1.5	0.2
	1.5	32000	1400	2.2	0.3
	2	29000	2200	3	0.6
	3	19000	2300	4.5	0.9
	4	14000	2300	6	1.2
Rame,	5	11000	2100	7.5	1.5
Lega di rame	6	9500	2300	9	1.8
	8	7200	2300	12	2.4
	10	5700	2100	15	3
	12	4800	1700	18	3.6
	16	3600	1500	24	4.8
	20	2900	1200	30	6
	1	13000	160	1.5	0.05
	1.5	8500	170	2.2	0.08
	2	6400	170	3	0.2
	3	4200	180	4.5	0.3
	4	3200	180	6	0.4
C. Lagha resistanti al calara	5	2500	180	7.5	0.5
S Leghe resistenti al calore	6	2100	190	9	0.6
	8	1600	190	12	0.8
	10	1300	220	15	1
	12	1100	210	18	1.2
	16	800	150	24	1.6
	20	640	120	30	2

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар	ae
	1	38000	560	1.5	0.2
	1.5	30000	890	2.2	0.3
	2	22000	1100	3	0.6
	3	15000	1200	4.5	0.9
	4	11000	1200	6	1.2
Rame,	5	8900	1100	7.5	1.5
Lega di rame	6	7400	1200	9	1.8
	8	5600	1200	12	2.4
	10	4500	1100	15	3
	12	3700	880	18	3.6
	16	2800	750	24	4.8
	20	2200	590	30	6
	1	9500	75	1.5	0.05
	1.5	6400	82	2.2	0.07
	2	4800	86	3	0.2
	3	3200	89	4.5	0.3
	4	2400	90	6	0.4
l anha maistanti al calcus	5	1900	90	7.5	0.5
Leghe resistenti al calore	6	1600	95	9	0.6
	8	1200	95	12	0.8
	10	950	110	15	1
	12	800	100	18	1.2
	16	600	76	24	1.6
	20	480	61	30	2

1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare.

Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

- Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.
- 3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.
- 4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

FRESATURA DI CAVE

CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Mat	eriale	DC	n	Vf	ар
		1	32000	380	0.5
		1.5	28000	590	0.7
		2	24000	940	2
		3	16000	1100	3
		4	12000	1400	4
	iaio al carbonio, iaio legato,	5	9500	1400	5
	iaio da costruzione	6	8000	1400	6
		8	6000	1300	8
		10	4800	1200	10
		12	4000	960	12
		16	3000	810	12
Р —		20	2400	650	12
		1	25000	150	0.5
		1.5	21000	250	0.7
		2	19000	460	2
		3	13000	550	3
Δcci	iaio pretemprato,	4	9500	680	4
Acci	iaio al carbonio,	5	7600	680	5
	iaio legato,	6	6400	770	6
Legi	he di acciaio per utensili	8	4800	720	8
		10	3800	630	10
		12	3200	580	12
		16	2400	500	12
		20	1900	400	12
		1	19000	100	0.5
		1.5	18000	220	0.7
		2	16000	480	2
М		3	11000	500	3
		4	8000	530	4
	iai inossidabili austenico,	5	6400	540	5
	ritico e martensitico, he di titanio	6	5300	560	6
		8	4000	600	8
		10	3200	670	10
S		12	2700	650	12
		16	2000	480	12
		20	1600	380	12
		1	14000	80	0.3
		1.5	12000	140	0.4
		2	9500	230	1
		3	6400	270	1.5
		4	4800	350	2
	iai inossidabili temprati,	5	3800	340	2.5
Lega	a di cromo cobalto	6	3200	380	3
		8	2400	360	4
		10	1900	310	5
		12	1600	290	6
		16	1200	250	8
		20	950	200	10

VQMHZV - FRESATURA DI CAVE - CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар
				-r
	1	38000	460	0.5
	1.5	32000	670	0.7
	2	29000	1100	2
	3	19000	1300	3
	4	14000	1700	4
Rame,	5	11000	1700	5
Lega di rame	6	9500	1700	6
	8	7200	1500	8
	10	5700	1400	10
	12	4800	1200	12
	16	3600	970	12
	20	2900	780	12
	1	9500	60	0.2
	1.5	6400	80	0.3
	2	4800	100	0.6
	3	3200	120	0.9
	4	2400	130	1.2
Lamba maniatanti al calama	5	1900	130	1.5
Leghe resistenti al calore	6	1600	130	1.8
	8	1200	140	2.4
	10	950	160	3
	12	800	150	3.6
	16	600	120	4.8
	20	480	90	6

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар
	1	32000	250	0.5
	1.5	21000	290	0.7
	2	16000	410	2
	3	11000	500	3
	4	8000	630	4
Acciaio al carbonio, Acciaio legato,	5	6400	630	5
Acciaio tegato, Acciaio da costruzione	6	5300	630	6
	8	4000	550	8
	10	3200	510	10
	12	2700	430	12
	16	2000	360	12
	20	1600	290	12
	1	25000	99	0.5
	1.5	17000	130	0.7
	2	13000	210	2
	3	8500	240	3
Acciaio pretemprato,	4	6400	300	4
Acciaio al carbonio,	5	5100	300	5
Acciaio legato, Leghe di acciaio per utensili	6	4200	330	6
Legile di acciaio per dierisid	8	3200	320	8
	10	2500	270	10
	12	2100	250	12
	16	1600	220	12
	20	1300	180	12
	1	19000	80	0.5
	1.5	13000	100	0.7
	2	9500	190	2
	3	6400	190	3
	4	4800	210	4
Acciai inossidabili austenico, Ferritico e martensitico,	5	3800	210	5
Leghe di titanio	6	3200	220	6
	8	2400	240	8
	10	1900	260	10
	12	1600	250	12
	16	1200	190	12
	20	950	150	12
	1	14000	60	0.3
	1.5	11000	87	0.4
	2	8000	130	1
	3	5300	150	1.5
	4	4000	190	2
Acciai inossidabili temprati,	5	3200	190	2.5
Lega di cromo cobalto	6	2700	210	3
	8	2000	200	4
	10	1600	170	5
	12	1300	150	6
	16	990	140	8
	20	800	110	10

VQMHZV - CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар
	1	38000	300	0.5
	1.5	25000	350	0.7
	2	19000	490	2
	3	13000	590	3
	4	9500	750	4
Rame,	5	7600	750	5
Lega di rame	6	6400	760	6
	8	4800	670	8
	10	3800	600	10
	12	3200	510	12
	16	2400	430	12
	20	1900	340	12
	1	8000	30	0.2
	1.5	5300	40	0.3
	2	4000	55	0.6
	3	2700	64	0.9
	4	2000	70	1.2
	5	1600	71	1.5
Leghe resistenti al calore	6	1300	72	1.8
	8	990	78	2.4
	10	800	89	3
	12	660	84	3.6
	16	500	63	4.8
	20	400	50	6

- 1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica)
 - potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser..
- 2. Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.
- 3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.
- 4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

FRESATURA A TUFFO CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

	Materiale	DC	n	Vf	ар	р
		1	20000	160	0.5	0.1
		1.5	18000	270	0.7	0.3
		2	16000	480	2	0.5
		3	11000	660	3	1
		4	8000	800	4	2
	Acciaio al carbonio, Acciaio legato,	5	6400	960	5	2.5
	Acciaio da costruzione	6	5300	950	6	3
		8	4000	720	8	4
		10	3200	580	10	5
		12	2700	490	12	5
		16	2000	360	16	5
P		20	1600	290	20	5
٢		1	16000	100	0.5	0.1
		1.5	13000	120	0.7	0.3
		2	11000	200	2	0.4
		3	7400	270	3	0.6
	Acciaio pretemprato,	4	5600	340	4	0.8
	Acciaio pretemprato, Acciaio al carbonio,	5	4500	410	5	1
	Acciaio legato,	6	3700	440	6	1.2
	Leghe di acciaio per utensili	8	2800	340	8	1.6
		10	2200	260	10	2.5
		12	1900	230	12	3
		16	1400	170	16	4
		20	1100	130	20	5
		1	16000	50	0.5	0.05
		1.5	13000	80	0.7	0.1
		2	9500	90	1	0.1
М		3	6400	100	1.5	0.2
		4	4800	100	2	0.4
	Acciai inossidabili austenico,	5	3800	100	2.5	0.5
	Ferritico e martensitico, Leghe di titanio	6	3200	100	3	0.6
	Legile di titalio	8	2400	70	4	0.6
		10	1900	60	5	0.6
S		12	1600	50	6	0.6
		16	1200	40	8	0.6
		20	950	30	10	0.6
		1	9500	30	0.5	0.05
		1.5	7400	40	0.7	0.1
		2	6400	60	1	0.1
		3	4200	60	1.5	0.2
		4	3200	60	2	0.4
	Acciai inossidabili temprati,	5	2500	60	2.5	0.5
М	Lega di cromo cobalto	6	2100	60	3	0.6
	-	8	1600	50	4	0.6
		10	1300	40	5	0.6
		12	1100	30	6	0.6
		16	800	20	8	0.6
		20	640	20	10	0.6

VQMHZV - FRESATURA A TUFFO - CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар	р
	1	24000	190	0.5	0.1
	1.5	21000	320	0.7	0.3
	2	19000	570	2	0.5
	3	13000	780	3	0.9
	4	9500	950	4	2
Rame,	5	7600	1100	5	2.5
_ega di rame	6	6400	1200	6	3
	8	4800	860	8	4
	10	3800	680	10	5
	12	3200	580	12	5
	16	2400	430	16	5
	20	1900	340	20	5

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

	DC	n	Vf	ар	р
	1	20000	160	0.5	0.05
	1.5	18000	270	0.7	0.1
	2	16000	480	2	0.2
	3	11000	660	3	0.3
	4	8000	800	4	0.4
Acciaio al carbonio,	5	6400	960	5	0.5
Acciaio legato, Acciaio da costruzione	6	5300	950	6	0.6
	8	4000	720	8	0.7
	10	3200	580	10	0.7
	12	2700	490	12	0.7
	16	2000	360	16	0.7
	20	1600	290	20	0.7
	1	16000	100	0.5	0.05
	1.5	13000	120	0.7	0.1
	2	11000	200	2	0.2
	3	7400	270	3	0.3
Acciaio pretemprato,	4	5600	340	4	0.4
Acciaio pretemprato, Acciaio al carbonio,	5	4500	410	5	0.5
Acciaio legato,	6	3700	440	6	0.6
Leghe di acciaio per utensili	8	2800	340	8	0.7
	10	2200	260	10	0.7
	12	1900	230	12	0.7
	16	1400	170	16	0.7
	20	1100	130	20	0.7
	1	16000	50	0.5	0.05
	1.5	13000	80	0.7	0.05
	2	9500	90	1	0.05
	3	6400	100	1.5	0.1
	4	4800	100	2	0.2
Acciai inossidabili austenico,	5	3800	100	2.5	0.2
Ferritico e martensitico,	6	3200	100	3	0.3
Leghe di titanio	8	2400	70	4	0.3
	10	1900	60		0.3
	12	1600	50	6	0.3
	16	1200	40	8	0.3
	20	950	30	10	0.3
	1	9500	30	0.5	0.05
	1.5	7400	40	0.7	0.05
	2	6400	60	1	0.05
A	3	4200	60	1.5	0.03
	4	3200	60	2	0.1
	5	2500	60	2.5	0.2
Acciai inossidabili temprati, Lega di cromo cobalto	6	2100	60	3	0.2
	8	1600	50	4	0.3
	10	1300	40	5	0.3
	12	1100	30	6	0.3
	<u>16</u> 20	800 640	20	8 10	0.3

2/2

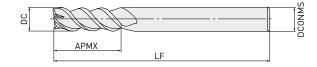
VQMHZV - CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар	p
	1	24000	190	0.5	0.05
	1.5	21000	320	0.7	0.1
	2	19000	570	2	0.2
	3	13000	780	3	0.3
	4	9500	950	4	0.4
Rame,	5	7600	1100	5	0.5
Lega di rame	6	6400	1200	6	0.6
	8	4800	860	8	0.7
	10	3800	680	10	0.7
	12	3200	580	12	0.7
	16	2400	430	16	0.7
	20	1900	340	20	0.7

- 1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare.
 - Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.
- 2. Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.
- 3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.

VQMHZVOH

FRESA CON LUNGHEZZA TAGLIENTE MEDIA, 3 TAGLIENTI PER FRESATURA A TUFFO E FRESATURA DI CAVE CON FORI INTERNI PER PASSAGGIO REFRIGERANTE.



DC < 12	DC = 16	
0	0	
-0.02	-0.03	
D4 = 6	8< D4 <10	12< D4 <16
0	0	0
-0.008	-0.009	-0.011

• Fori per il passaggio del refrigerante per fresatura a tuffo e realizzazione di cave ad alte prestazioni

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP
VQMHZVOHD0600	•	6	13	60	6	3
VQMHZVOHD0800	•	8	19	70	8	3
VQMHZVOHD1000	•	10	22	80	10	3
VQMHZVOHD1200	•	12	26	90	12	3
VQMHZVOHD1600	•	16	30	110	16	3
						1/1

VQMHZVOH

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA DI CAVE

CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар
	6	8000	1400	6
Acciaio al carbonio,	8	6000	1300	8
Acciaio legato,	10	4800	1200	10
Acciaio da costruzione	12	4000	960	12
	16	3000	810	12
	6	6400	770	6
Acciaio pretemprato,	8	4800	720	8
Acciaio al carbonio, Acciaio legato,	10	3800	630	10
Leghe di acciaio per utensili	12	3200	580	12
·	16	2400	500	12
	6	5300	560	6
Acciai inossidabili austenico,	8	4000	600	8
Ferritico e martensitico,	10	3200	670	10
Leghe di titanio	12	2700	650	12
	16	2000	480	12
	6	3200	380	3
	8	2400	360	4
Acciai inossidabili temprati, Lega di cromo cobalto	10	1900	310	5
Lega di Cromo cobatto	12	1600	290	6
	16	1200	250	8
	6	9500	1700	6
	8	7200	1500	8
Rame, Lega di rame	10	5700	1400	10
Lega ui raille	12	4800	1200	12
	16	3600	970	12
	6	1600	130	1.8
	8	1200	140	2.4
Leghe resistenti al calore	10	950	160	3
	12	800	150	3.6
	16	600	120	4.8

71

VQMHZVOH

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар
	6	5300	630	6
Acciaio al carbonio,	8	4000	550	8
Acciaio at carbonio, Acciaio legato,	10	3200	510	10
Acciaio da costruzione	12	2700	430	12
	16	2000	360	12
	6	4200	330	6
Acciaio pretemprato,	8	3200	320	8
Acciaio al carbonio, Acciaio legato,	10	2500	270	10
Leghe di acciaio per utensili	12	2100	250	12
	16	1600	220	12
	6	3200	220	6
Acciai inossidabili austenico,	8	2400	240	8
Ferritico e martensitico,	10	1900	260	10
Leghe di titanio	12	1600	250	12
	16	1200	190	12
	6	2700	210	3
	8	2000	200	4
Acciai inossidabili temprati, Lega di cromo cobalto	10	1600	170	5
Lega di Cromo Cobatto	12	1300	150	6
	16	990	140	8
	6	6400	760	6
_	8	4800	670	8
Rame, Lega di rame	10	3800	600	10
Loga at tarrie	12	3200	510	12
	16	2400	430	12
	6	1300	72	1.8
	8	990	78	2.4
Leghe resistenti al calore	10	800	89	3
	12	660	84	3.6
	16	500	63	4.8

^{1.} Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare.

[.] Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

^{2.} Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.

^{3.} Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti.

In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.

4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

VQMHZVOH

FRESATURA A TUFFO

CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар	р
	6	5300	950	9	3
Acciaio al carbonio,	8	4000	720	12	4
Acciaio legato,	10	3200	580	15	5
Acciaio da costruzione	12	2700	490	18	5
	16	2000	360	24	5
	6	3700	440	9	1.2
Acciaio pretemprato, Acciaio al carbonio, Acciaio legato, Leghe di acciaio per utensili	8	2800	340	12	1.6
	10	2200	260	15	2.5
	12	1900	230	18	3
	16	1400	170	24	4
	6	3200	100	6	0.6
Acciai inossidabili austenico,	8	2400	70	8	0.6
Ferritico e martensitico,	10	1900	60	10	0.6
Leghe di titanio	12	1600	50	12	0.6
	16	1200	40	16	0.6
	6	2100	60	6	0.6
	8	1600	50	8	0.6
Acciai inossidabili temprati, Lega di cromo cobalto	10	1300	40	10	0.6
Lega di cromo cobatto	12	1100	30	12	0.6
	16	800	20	16	0.6
	6	6400	1200	9	3
	8	4800	860	12	4
Rame, Lega di rame	10	3800	680	15	5
Lega di rame	12	3200	580	18	5
	16	2400	430	24	5

VQMHZVOH

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

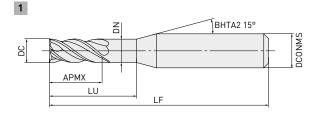
Materiale	DC	n	Vf	ар	p
	6	5300	950	9	0.6
Acciaio al carbonio,	8	4000	720	12	0.7
Acciaio legato,	10	3200	580	15	0.75
Acciaio da costruzione	12	2700	490	18	0.75
	16	2000	360	24	0.75
	6	3700	440	9	0.6
Acciaio pretemprato,	8	2800	340	12	0.7
Acciaio al carbonio, Acciaio legato,	10	2200	260	15	0.75
Leghe di acciaio per utensili	12	1900	230	18	0.75
	16	1400	170	24	0.75
	6	3200	100	6	0.3
Acciai inossidabili austenico,	8	2400	70	8	0.3
Ferritico e martensitico,	10	1900	60	10	0.3
Leghe di titanio	12	1600	50	12	0.3
	16	1200	40	16	0.3
	6	2100	60	6	0.3
	8	1600	50	8	0.3
Acciai inossidabili temprati, Lega di cromo cobalto	10	1300	40	10	0.3
Lega di Cromo cobatto	12	1100	30	12	0.3
	16	800	20	16	0.3
	6	6400	1200	9	0.6
	8	4800	860	12	0.7
Rame, Lega di rame	10	3800	680	15	0.75
Lega di i dille	12	3200	580	18	0.75
	16	2400	430	24	0.75

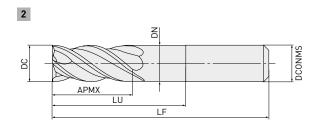
1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

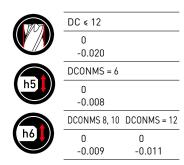
2. Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso

di refrigeranti emulsionabili.

3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.


FRESA INTEGRALE, LUNGHEZZA DI TAGLIO MEDIA, 4 TAGLIENTI, FRESATURA MULTIFUNZIONALE





- Fresa multifunzionale che consente una forte capacità di rampa.
- L'evacuazione del truciolo viene migliorata aumentando la capacità del vano di scarico.

	ità		-						
Codice ordinazione	Disponibilità	DC	APMX	LF	DCONMS	LU	DN	ZEFP	Tipo
VQ4MVMD0400N180	•	4	11	50	6	18	3.85	4	1
VQ4MVMD0500N180	•	5	13	50	6	18	4.85	4	1
VQ4MVMD0600N200	•	6	13	60	6	20	5.85	4	2
VQ4MVMD0800N240	•	8	19	60	8	24	7.85	4	2
VQ4MVMD1000N300	•	10	22	70	10	30	9.70	4	2
VQ4MVMD1200N360	•	12	26	75	12	36	11.70	4	2
									1/1

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

Materiale	DC	n	Vc	f	ар	ae
	4	9500	120	1400	6	1.2
	5	7600	120	1400	7.5	1.5
Acciai dolci, Acciai al carbonio,	6	6400	120	1400	9	1.8
Acciai legati (180 – 280HB),	8	4800	120	1300	12	2.4
3 1 1	10	3800	120	1200	15	3
P	12	3200	120	1000	18	3.6
	4	5600	70	490	4	0.4
	5	4500	70	500	5	0.5
Acciai bonificati (<45HRC),	6	3700	70	500	6	0.6
Acciai legati per utensili	8	2800	70	520	8	0.8
	10	2200	70	460	10	1
	12	1900	70	450	12	1
	4	6400	80	470	4	0.6
M Acciai inossidabili austenitici,	5	5100	80	470	5	0.9
Acciai inossidabili ferritici e martensitici,	6	4200	80	580	6	1.2
_	8	3200	80	630	8	1.5
S Leghe di titanio	10	2500	80	660	10	1.8
	12	2100	80	610	12	2.4
	4	5600	70	490	4	0.8
	5	4500	70	500	5	1
Acciai inossidabili temprati per precipitazione,	6	3700	70	500	6	1.2
Leghe di cromo cobalto.	8	2800	70	520	8	1.6
	10	2200	70	460	10	2
	12	1900	70	450	12	2.4
	4	2400	30	120	4	0.4
	5	1900	30	120	5	0.5
C. Lagha resistanti al calera	6	1600	30	130	6	0.6
S Leghe resistenti al calore	8	1200	30	130	8	0.8
	10	950	30	140	10	1
	12	800	30	140	12	1.2

1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto bassa; quindi, un presetting utensile a contatto (trasmesso elettricamente) potrebbe non funzionare.

Quando si misura la lunghezza dell'utensile, utilizzare un azzeratore a contatto meccanico (non elettrico) o un presetti

Quando si misura la lunghezza dell'utensile, utilizzare un azzeratore a contatto meccanico (non elettrico) o un presetting utensile laser.

- 2. Per il taglio di acciai inossidabili austenitici e leghe di titanio, è efficace l'uso di un fluido da taglio solubile in acqua.
- 3. Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e l'avanzamento.
- 4. Se la rigidità della macchina o dello staffaggio è molto bassa, o si generano vibrazioni e rumore, ridurre proporzionalmente il numero di giri e la velocità di avanzamento.

CAVA DAL PIENO E RAMPA

Materiale	DC	n	Vc	f	ар	ae
	4	8000	100	840	4	4
	5	6400	100	840	5	5
Acciai dolci,	6	5300	100	840	6	6
Acciai al carbonio, Acciai legati (180 – 280HB)	8	4000	100	740	8	8
, , , , , , , , , , , , , , , , , , , ,	10	3200	100	680	10	10
	12	2700	100	570	12	12
	4	4800	60	210	2	4
	5	3800	60	210	2.5	5
Acciai bonificati (<45HRC),	6	3200	60	230	3	6
Acciai per utensili	8	2400	60	240	4	8
	10	1900	60	270	5	10
	12	1600	60	260	6	12
	4	4800	60	280	4	4
1	5	3800	60	280	5	5
Acciai inossidabili austenitici,	6	3200	60	300	6	6
Acciai inossidabili ferritici e martensitici, Leghe di titanio	8	2400	60	320	8	8
5	10	1900	60	350	10	10
	12	1600	60	340	12	12
	4	4000	50	250	2	4
	5	3200	50	250	2.5	5
Acciai inossidabili temprati per precipitazione,	6	2700	50	290	3	6
Leghe di cromo cobalto	8	2000	50	260	4	8
	10	1600	50	230	5	10
	12	1300	50	210	6	12
	4	2000	25	93	1.2	4
	5	1600	25	95	1.5	5
Lanka maiskanti el selene	6	1300	25	96	1.8	6
Leghe resistenti al calore	8	990	25	100	2.4	8
	10	800	25	120	3	10
	12	660	25	110	3.6	12

1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto bassa; quindi, un presetting utensile a contatto (trasmesso elettricamente) potrebbe non funzionare.

Quando si misura la lunghezza dell'utensile, utilizzare un azzeratore a contatto meccanico (non elettrico) o un presetting utensile laser.

- 2. Per il taglio di acciai inossidabili austenitici e leghe di titanio, è efficace l'uso di un fluido da taglio solubile in acqua.

 3. Quando si esegue una lavorazione con un forte angolo di rampa, si consiglia di utilizzare un portautensili ad alta forza di
- 4. Quando si esegue una rampa più profonda della profondità di taglio consigliata, dividere il processo in più fasi entro la profondità di taglio consigliata.
- 5. Se la rigidità della macchina o dello staffaggio è molto bassa o si generano vibrazioni e rumore, ridurre proporzionalmente il numero di giri e la velocità di avanzamento.

FATTORE DI VELOCITÀ DI AVANZAMENTO PER LA RAMPA

	Matariala	DC			Avanzame	nto in cava o	dal pieno %		
	Materiale	DC	1°	5°	10°	15°	20°	25°	30°
		4	100	90	80	80	60	60	60
		5	100	90	80	80	60	60	60
	Acciai dolci,	6	100	90	80	80	60	60	60
	Acciai al carbonio, Acciai legati (180 – 280HB),	8	100	95	90	90	90	75	75
	, , , , , , , , , , , , , , , , , , ,	10	100	95	95	95	90	80	80
Р		12	100	95	95	95	90	80	80
Ρ		4	80	70	60				
		5	80	70	60				
	Acciai bonificati (≤45HRC),	6	80	70	60				
	Acciai per utensili	8	70	60	50				
		10	70	60	50				
		12	70	60	50				
		4	90	80	70	50			
М		5	90	80	70	50			
	Acciai inossidabili austenitici,	6	90	80	70	60			
	Acciai inossidabili ferritici e martensitici, Leghe di titanio	8	90	80	70	60			
S	Logino ai titalino	10	80	70	60	50			
		12	80	70	60	50			
		4	90	80	70	60	60		
		5	90	80	70	60	60		
	Acciai inossidabili temprati per precipitazione,	6	90	80	70	60	60		
М	Leghe di cromo cobalto	8	90	80	70	60	60		
		10	80	80	70	60	60		
		12	80	80	70	60	60		
		4	90	80					
		5	90	80					
		6	90	80					
S	Leghe resistenti al calore	8	90	80					
		10	80	70					
		12	80	70					

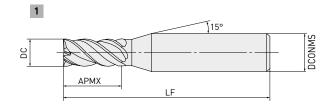
1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto bassa; quindi, un presetting utensile a contatto (trasmesso elettricamente) potrebbe non funzionare.

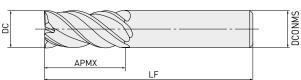
Quando si misura la lunghezza dell'utensile, utilizzare un azzeratore a contatto meccanico (non elettrico) o un presetting utensile laser.

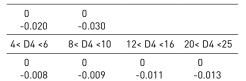
- 2. Quando si esegue la rampa, utilizzare la velocità di avanzamento indicata nella pagina precedente moltiplicata per il coefficiente.
- 3. Per il taglio di acciai inossidabili austenitici e leghe di titanio, è efficace l'uso di un fluido da taglio solubile in acqua.
- 4. Quando si eseguono lavorazioni con ampi angoli di rampa, si consiglia un portautensili ad alta forza di serraggio. Inoltre, se la macchina o il materiale del pezzo mancano di rigidità o se si verificano scheggiature sul tagliente, regolare l'angolo di rampa e la velocità di avanzamento.

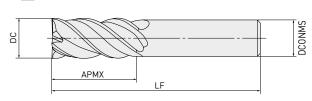
5. Quando si esegue una rampa più profonda della profondità di taglio consigliata, dividere il processo in più fasi entro la profondità di taglio consigliata.

FRESA CON LUNGHEZZA TAGLENTEO MEDIA, 4 TAGLIENTI, ELICHE VARIABILI, DISPONIBILI CON GAMBI SCARICATI PER LAVORAZIONI CON ELEVATI SBALZI SU PARETI VERTICALI

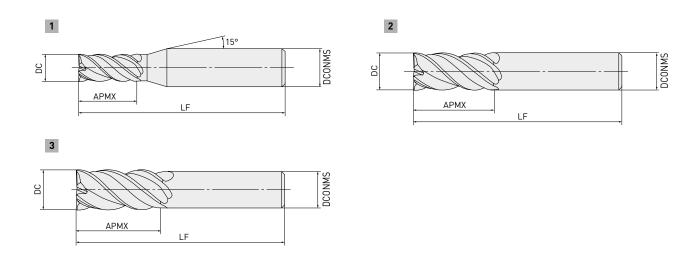








DC <12


DC >12

• Le frese antivibranti VQ permettono una riduzione delle vibrazioni e consentono prestazioni stabili su materiali difficili da tagliare ed applicazioni con elevati sbalzi.

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
VQMHVD0100	•	1	2	45	4	4	1
VQMHVD0150	•	1.5	3	45	4	4	1
VQMHVD0200	•	2	4	45	4	4	1
VQMHVD0250	•	2.5	5	45	4	4	1
VQMHVD0300	•	3	8	45	6	4	1
VQMHVD0350	•	3.5	8	45	6	4	1
VQMHVD0400	•	4	11	45	6	4	1
VQMHVD0500	•	5	13	50	6	4	1
VQMHVD0600	•	6	13	50	6	4	2
VQMHVD0700	•	7	19	60	8	4	1
VQMHVD0800	•	8	19	60	8	4	2
VQMHVD0900	•	9	22	70	10	4	1
VQMHVD0900S08	•	9	22	75	8	4	3
VQMHVD1000	•	10	22	70	10	4	2
VQMHVD1000S08	•	10	22	100	8	4	3
VQMHVD1100	•	11	26	75	12	4	1

VQMHV – FRESA CON LUNGHEZZA TAGLENTEO MEDIA, 4 TAGLIENTI, ELICHE VARIABILI, DISPONIBILI CON GAMBI SCARICATI PER LAVORAZIONI CON ELEVATI SBALZI SU PARETI VERTICALI

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
VQMHVD1100S10	•	11	26	100	10	4	3
VQMHVD1200	•	12	26	75	12	4	2
VQMHVD1200S10	•	12	26	110	10	4	3
VQMHVD1300	•	13	26	75	12	4	3
VQMHVD1300S12	•	13	26	110	12	4	3
VQMHVD1400	•	14	30	90	16	4	1
VQMHVD1400S12	•	14	32	130	12	4	3
VQMHVD1600	•	16	35	90	16	4	2
VQMHVD1800	•	18	40	100	16	4	3
VQMHVD1800S16	•	18	42	150	16	4	3
VQMHVD2000	•	20	45	110	20	4	2
VQMHVD2500	•	25	55	125	25	4	2

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Matantala					
Materiale	DC	n	Vf	ар	ae
	2	24000	2400	3	0.6
	3	16000	2600	4.5	0.9
	4	12000	2600	6	1.2
	5	9500	2500	7.5	1.5
Acciaio al carbonio,	6	8000	2600	9	1.8
Acciaio legato,	8	6000	2500	12	2.4
Acciaio da costruzione	10	4800	2300	15	3
	12	4000	1900	18	3.6
	16	3000	1600	24	4.8
	20	2400	1300	30	6
	25	1900	1100	37	7.5
	2	19000	1100	3	0.6
	3	13000	1200	4.5	0.9
	4	9500	1300	6	1.2
	5	7600	1300	7.5	1.5
Acciaio pretemprato,	6	6400	1300	9	1.8
Acciaio al carbonio, Acciaio legato,	8	4800	1300	12	2.4
Leghe di Acciaio per utensili	10	3800	1200	15	3
	12	3200	1200	18	3.6
	16	2400	960	24	4.8
	20	1900	760	30	6
	25	1500	600	37	7.5
	2	16000	830	3	0.6
	3	11000	880	4.5	0.9
	4	8000	900	6	1.2
	5	6400	900	7.5	1.5
Acciaio austenico,	6	5300	1100	9	1.8
Ferritico e acciaio inossidabile	8	4000	1200	12	2.4
martensitico, Lega di titanio	10	3200	1300	15	3
	12	2700	1200	18	3.6
	16	2000	960	24	4.8
	20	1600	770	30	6
	25	1300	620	37	7.5
	2	12000	720	3	0.4
	3	8000	770	4.5	0.6
	4	6000	790	6	0.8
	5	4800	810	7.5	1
	6	4000	800	9	1.2
Acciai inossidabili temprati,	8	3000	840	12	1.6
Lega di cromo cobalto	10	2400	770	15	2
	12	2000	720	18	2.4
	16	1500	600	24	3.2
	20	1200	480	30	4
	25	950	380	37	5

ap

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар	ae
	2	19000	1300	3	0.6
	3	13000	1400	4.5	0.9
	4	9500	1400	6	1.2
	5	7600	1300	7.5	1.5
Acciaio al carbonio,	6	6400	1400	9	1.8
Acciaio legato,	8	4800	1300	12	2.4
cciaio da costruzione	10	3800	1200	15	3
	12	3200	1000	18	3.6
	16	2400	860	24	4.8
	20	1900	680	30	6
	25	1500	390	37.5	7.5
	2	16000	630	3	0.6
	3	11000	700	4.5	0.9
	4	8000	700	6	1.2
	5	6400	710	7.5	1.5
Acciaio pretemprato,	6	5300	700	9	1.8
Acciaio al carbonio, Acciaio legato,	8	4000	740	12	2.4
Leghe di Acciaio per utensili	10	3200	680	15	3
	12	2700	640	18	3.6
	16	2000	530	24	4.8
	20	1600	420	30	6
	25	1300	340	37.5	7.5
	2	13000	450	1.5	0.2
	3	8500	450	2.25	0.3
	4	6400	470	3	0.6
	5	5100	470	4.5	0.9
Acciaio austenico,	6	4200	580	6	1.2
Ferritico e acciaio inossidabile martensitico,	8	3200	630	7.5	1.5
Lega di titanio	10	2500	660	9	1.8
·	12	2100	610	12	2.4
	16	1600	510	15	3
	20	1300	410	18	3.6
	25	1000	210	24	4.8
	2	11000	440	3	0.4
	3	7400	470	4.5	0.6
	4	5600	490	6	0.8
	5	4500	500	7.5	1
	6	3700	490	9	1.2
Acciai inossidabili temprati, Lega di cromo cobalto	8	2800	520	12	1.6
Lega di ci omo cobatto	10	2200	460	15	2
	12	1900	450	18	2.4
	16	1400	370	24	3.2
	20	1100	290	30	4
	25	890	230	37.5	5

^{1.} Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

^{2.} Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.

^{3.} Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti.
In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.

^{4.} Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

FRESATURA IN SPALLAMENTO CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Matière	DC	n	Vf	ар	ae
	2	29000	2900	3	0.6
	3	19000	3000	4.5	0.9
	4	14000	3100	6	1.2
	5	11000	2900	7.5	1.5
Rame, Lega di rame	6	9500	3000	9	1.8
	8	7200	3000	12	2.4
	10	5700	2700	15	3
	12	4800	2300	18	3.6
	16	3600	1900	24	4.8
	20	2900	1600	30	6
	25	2300	1300	37	7.5
	2	6400	230	3	0.2
	3	4200	240	4.5	0.3
	4	3200	240	6	0.4
	5	2500	240	7.5	0.5
	6	2100	250	9	0.6
Leghe resistenti al calore	8	1600	260	12	0.8
	10	1300	290	15	1
	12	1100	280	18	1.2
	16	800	200	24	1.6
	20	640	160	30	2
	25	510	130	37.5	2.5

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Matière	DC	n	Vf	ар	ae
	2	22000	1500	3	0.6
	3	15000	1600	4.5	0.9
	4	11000	1600	6	1.2
Rame, Lega di rame	5	8900	1500	7.5	1.5
	6	7400	1600	9	1.8
	8	5600	1600	12	2.4
	10	4500	1400	15	3
	12	3700	1200	18	3.6
	16	2800	1000	24	4.8
	20	2200	780	30	6
	25	1800	670	37.5	7.5
	2	4800	110	3	0.2
	3	3200	120	4.5	0.3
	4	2400	120	6	0.4
	5	1900	120	7.5	0.5
	6	1600	130	9	0.6
S Leghe resistenti al calore	8	1200	130	12	0.8
	10	950	140	15	1
	12	800	140	18	1.2
	16	600	100	24	1.6
	20	480	81	30	2
	25	380	64	37.5	2.5

- 1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore
 - di tipo laser.
- 2. Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.
- 3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.
- 4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

FRESATURA DI CAVE

CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

	Materiale	DC	n	Vf	ар
		2	24000	1200	2
		3	16000	1500	3
		4	12000	1900	4
		5	9500	1900	5
	Acciaio al carbonio,	6	8000	1900	6
	Acciaio legato,	8	6000	1700	8
	Acciaio da costruzione	10	4800	1500	10
		12	4000	1300	12
		16	3000	1100	12
		20	2400	860	12
Р		25	1900	760	12
		2	19000	610	2
		3	13000	730	3
		4	9500	910	4
	A : - :	5	7600	910	5
	Acciaio pretemprato, Acciaio al carbonio,	6	6400	1000	6
	Acciaio legato,	8	4800	960	8
	Leghe di acciaio per utensili	10	3800	840	10
		12	3200	770	12
		16	2400	670	12
		20	1900	530	12
		25	1500	420	12
		2	16000	640	2
		3 4	11000 8000	700	3
М		5	6400	720	5
		6	5300	740	6
	Acciai inossidabili austenico, Ferritico e martensitico,	8	4000	800	8
	Leghe di titanio	10	3200	900	10
		12	2700	860	12
S		16	2000	640	12
		20	1600	510	12
		25	1300	420	12
		2	9500	300	1
		3	6400	360	1.5
		4	4800	460	2
		5	3800	460	2.5
		6	3200	510	3
М	Acciai inossidabili temprati, Lega di cromo cobalto	8	2400	480	4
	Lega ar cromo cobatto	10	1900	420	5
		12	1600	380	6
		16	1200	340	8
		20	950	270	10
		25	760	210	12

VQMHV - FRESATURA DI CAVE - CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар
	2	29000	1500	2
	3	19000	1700	3
	4	14000	2200	4
	5	11000	2200	5
	6	9500	2300	6
Rame, Lega di rame	8	7200	2000	8
Lega di Fame	10	5700	1800	10
	12	4800	1500	12
	16	3600	1300	12
	20	2900	1000	12
	25	2300	920	12
	2	4800	130	0.6
	3	3200	150	0.9
	4	2400	170	1.2
	5	1900	170	1.5
	6	1600	180	1.8
Leghe resistenti al calore	8	1200	190	2.4
	10	950	210	3
	12	800	200	3.6
	16	600	150	4.8
	20	480	120	6
	25	380	100	7.5

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар
	2	16000	550	2
	3	11000	670	3
	4	8000	840	4
	5	6400	840	5
Acciaio al carbonio,	6	5300	840	6
Acciaio legato,	8	4000	740	8
Acciaio da costruzione	10	3200	680	10
	12	2700	570	12
	16	2000	480	12
	20	1600	380	12
	25	1300	340	12
	2	13000	270	2
	3	8500	310	3
	4	6400	410	4
	5	5100	400	5
Acciaio pretemprato,	6	4200	440	6
Acciaio al carbonio, Acciaio legato,	8	3200	420	8
Leghe di acciaio per utensili	10	2500	360	10
	12	2100	330	12
	16	1600	300	12
	20	1300	240	12
	25	1000	180	12
	2	9500	250	2
	3	6400	250	3
	4	4800	280	4
<mark>1</mark>	5	3800	280	5
Acciai inossidabili austenico,	6	3200	300	6
Ferritico e martensitico,	8	2400	320	8
Leghe di titanio	10	1900	350	10
	12	1600	340	12
	16	1200	250	12
	20	950	200	12
	25	760	160	12
	2	8000	170	1
	3	5300	200	1.5
	4	4000	250	2
	5	3200	250	2.5
	6	2700	290	3
Acciai inossidabili temprati,	8	2000	260	4
Lega di cromo cobalto	10	1600	230	5
	12	1300	210	6
	16	990	180	8
	20	800	150	10
	25	640	120	12
	23	040	120	12

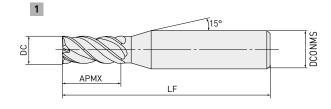
VQMHV - CONDIZIONI DI TAGLIO PER SCOPI GENERICI

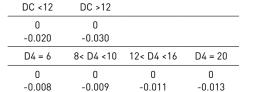
	Materiale	DC	n	Vf	ар
		2	19000	650	2
		3	13000	790	3
		4	9500	1000	4
		5	7600	1000	5
		6	6400	1000	6
N	Rame,	8	4800	890	8
	Lega di rame	10	3800	800	10
		12	3200	680	12
		16	2400	570	12
		20	1900	450	12
		25	1500	400	12
		2	4000	74	0.6
		3	2700	86	0.9
		4	2000	93	1.2
		5	1600	95	1.5
		6	1300	96	1.8
S	Leghe resistenti al calore	8	990	100	2.4
		10	800	120	3
		12	660	110	3.6
		16	500	84	4.8
		20	400	68	6
		25	320	50	7.5

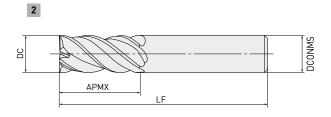
- 1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare
 - Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.
- 2. Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.
- 3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.
- 4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

VQJHV

FRESA CON LUNGHEZZA TAGLIENTE SEMILUNGA, 4 TAGLIENTI, ELICHE VARIABILI







• Le frese antivibranti VQ permettono una riduzione delle vibrazioni e consentono prestazioni stabili su materiali difficili da tagliare ed applicazioni con elevati sbalzi.

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
VQJHVD0100	•	1	4	45	4	4	1
VQJHVD0150	•	1.5	6	45	4	4	1
VQJHVD0200	•	2	8	60	6	4	1
VQJHVD0250	•	2.5	10	60	6	4	1
VQJHVD0300	•	3	12	60	6	4	1
VQJHVD0350	•	3.5	14	60	6	4	1
VQJHVD0400	•	4	16	60	6	4	1
VQJHVD0450	•	4.5	18	60	6	4	1
VQJHVD0500	•	5	20	60	6	4	1
VQJHVD0600	•	6	24	60	6	4	2
VQJHVD0700	•	7	25	80	8	4	1
VQJHVD0800	•	8	28	80	8	4	2
VQJHVD0900	•	9	32	90	10	4	1
VQJHVD1000	•	10	35	90	10	4	2
VQJHVD1200	•	12	40	100	12	4	2
VQJHVD1600	•	16	55	125	16	4	2
VQJHVD2000	•	20	70	140	20	4	2
							1/1

VQJHV

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

Materiale	DC	n	Vf	ар	ae
	2	21000	700	5	0.2
	3	14000	960	7.5	0.3
	4	10000	1000	10	0.4
	5	8300	1100	12.5	0.5
Acciaio al carbonio,	6	6900	1200	15	0.6
Acciaio legato, Acciaio da costruzione	8	5200	1200	20	0.8
	10	4100	1100	25	1
	12	3400	1100	30	1.2
	16	2600	920	40	1.6
	20	2100	820	50	2
P	2	16000	510	5	0.2
	3	11000	680	7.5	0.3
	4	8000	690	10	0.4
Accinic protomproto	5	6400	730	12.5	0.5
Acciaio pretemprato, Acciaio al carbonio,	6	5300	810	15	0.6
Acciaio legato,	8	4000	840	20	0.8
Leghe di acciaio per utensili	10	3200	810	25	1
	12	2700	780	30	1.2
	16	2000	640	40	1.6
	20	1600	570	50	2
	2	13000	390	5	0.1
	3	8500	490	7.5	0.15
	4	6400	540	10	0.2
M Acciaio austenico,	5	5100	570	12.5	0.25
Ferritico e acciaio inossidabile	6	4200	630	15	0.3
martensitico,	8	3200	640	20	0.4
Lega di titanio	10	2500	590	25	0.5
	12	2100	550	30	0.6
S	16	1600	450	40	0.8
	20	1300	420	50	1
	2	12000	360	5	0.1
	3	8000	460	7.5	0.15
	4	6000	510	10	0.2
	5	4800	540	12.5	0.25
Acciai inossidabili temprati,	6	4000	600	15	0.3
Lega di cromo cobalto	8	3000	600	20	0.4
	10	2400	570	25	0.5
	12	2000	520	30	0.6
	16	1500	420	40	0.8
	20	1200	390	50	1

a

VQJHV - FRESATURA IN SPALLAMENTO

	Matière	DC	n	Vf	ар	ae
		2	25000	830	5	0.2
		3	17000	1200	7.5	0.3
		4	13000	1300	10	0.4
		 5	10000	1300	12.5	0.5
	Rame,	6	8500	1500	15	0.6
N	Lega di rame	8	6400	1500	20	0.8
		10	5100	1300	25	1
		12	4200	1300	30	1.2
		16	3200	1100	40	1.6
		20	2500	970	50	2
		2	6400	90	5	0.04
		3	4200	130	7.5	0.06
		4	3200	190	10	0.08
		5	2500	180	12.5	0.1
_	Lagha registenti al coloro	6	2100	180	15	0.12
S	Leghe resistenti al calore	8	1600	170	20	0.16
		10	1300	170	25	0.2
		12	1100	140	30	0.24
		16	800	110	40	0.32
		20	640	80	50	0.4

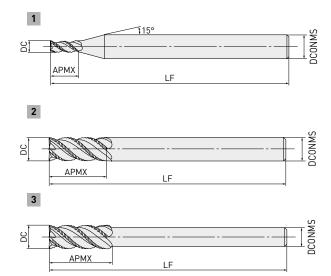
^{1.} Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigerantii emulsionabili.

^{3.} Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.

^{4.} Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

FRESA PER SGROSSATURA, LUNGHEZZA TAGLIENTE CORTA, 4 TAGLIENTI, ELICHE VARIABILI



1	D4 = 6	8< D4 <10	12< D4 <16	D4 = 20
,	0	0	0	0
	-0.008	-0.009	-0.011	-0.013

• Assicura una resistenza eccellente alle vibrazioni grazie all'adozione di un'elica variabile.

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	
	Dispo						Tipo
VQSVRD0300	•	3	6	60	6	3	1
VQSVRD0400	•	4	8	60	6	3	1
VQSVRD0500	•	5	10	60	6	3	1
VQSVRD0600	•	6	12	70	6	3	2
VQSVRD0700	•	7	17	80	8	3	1
VQSVRD0800	•	8	17	80	8	4	2
VQSVRD0900	•	9	22	90	10	4	1
VQSVRD1000S08	•	10	22	90	8	4	3
VQSVRD1000	•	10	22	90	10	4	2
VQSVRD1200S10	•	12	27	100	10	4	3
VQSVRD1200	•	12	27	100	12	4	2
VQSVRD1400	•	14	27	130	12	4	3
VQSVRD1600	•	16	33	125	16	4	2
VQSVRD1800	•	18	33	150	16	4	3
VQSVRD2000	•	20	38	140	20	4	2
							1/1

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

P Acciaio al carbonio, Acciaio da costruzione Acciaio al carbonio, Acciaio da costruzione Acciaio da costruzione P Acciaio pretemprato, Acciaio pretemprato, Acciaio pretemprato, Acciaio pretemprato, Acciaio legato, Acciaio pretemprato, A	ae
A	1.5
Acciaio al carbonio, Acciaio da costruzione P Acciaio da costruzione Acciaio da costruzione 10	2
Acciaio al carbonio, Acciaio al carbonio, Acciaio de costruzione P Acciaio al carbonio, Acciaio de costruzione 10	2.5
Acciaio al carbonio, Acciaio legato, Acciaio da costruzione 10	3
Acciaio legato, Acciaio da costruzione 10	3.5
Acciaio legato, Acciaio da costruzione P Receiaio da costruzione 10	4
Parish	4.5
Parish	5
Per	6
P	7
P Parish	8
Recommendation	9
Acciaio pretemprato, Acciaio legato, Leghe di acciaio per utensili M M M M M M M M M M M M M	10
Acciaio pretemprato,	1.5
Acciaio pretemprato, Acciaio al carbonio, Acciaio al carbonio, Acciaio per utensili 10 3800 760 15 12 3200 760 15 12 3200 700 18 14 2700 650 21 16 2400 620 24 18 2100 590 27 20 1900 560 30 3 11000 450 4.5 4 8000 430 6 5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	2
Acciaio pretemprato,	2.5
Acciaio pretemprato,	3
Acciaio al carbonio, Acciaio legato, Leghe di acciaio per utensili 10 3800 760 15 12 3200 700 18 14 2700 650 21 16 2400 620 24 18 2100 590 27 20 1900 560 30 3 11000 450 4.5 4 8000 430 6 5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	3.5
Acciaio legato, Leghe di acciaio per utensili 10 3800 760 15 12 3200 700 18 14 2700 650 21 16 2400 620 24 18 2100 590 27 20 1900 560 30 3 11000 450 4.5 4 8000 430 6 5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	4
M Leghe di acciaio per utensili 10 3800 760 15 12 3200 700 18 14 2700 650 21 16 2400 620 24 18 2100 590 27 20 1900 560 30 3 11000 450 4.5 4 8000 430 6 5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	4.5
14 2700 650 21 16 2400 620 24 18 2100 590 27 20 1900 560 30 3 11000 450 4.5 4 8000 430 6 5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	5
16 2400 620 24 18 2100 590 27 20 1900 560 30 3 11000 450 4.5 4 8000 430 6 5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	6
18 2100 590 27 20 1900 560 30 3 11000 450 4.5 4 8000 430 6 5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	7
20 1900 560 30 3 11000 450 4.5 4 8000 430 6 5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	8
3 11000 450 4.5 4 8000 430 6 5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	9
4 8000 430 6 5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	10
5 6400 440 7.5 6 5300 480 9 7 4500 500 10.5	1.5
6 5300 480 9 7 4500 500 10.5	2
6 5300 480 9 7 4500 500 10.5	2.5
0 (000 570 12	3
0 /000 E70 40	3.5
Acciai inossidabili austenico, 8 4000 570 12	4
ferritico e martensitico, 9 3500 560 13.5	4.5
Leghe di titanio 10 3200 570 15	5
12 2700 540 18	6
14 2300 510 21	7
16 2000 500 24	8
18	9
20 1600 510 30	10 1/2

93

VQSVR - FRESATURA IN SPALLAMENTO - CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар	ae
	3	8000	330	4.5	0.9
	4	6000	330	6	1.2
	5	4800	330	7.5	1.5
	6	4000	360	9	1.8
	7	3400	380	10.5	2.1
Acciai inossidabili	8	3000	430	12	2.4
temprati,	9	2700	430	13.5	2.7
Lega di cromo cobalto	10	2400	430	15	3
	12	2000	400	18	3.6
	14	1700	370	21	4.2
	16	1500	380	24	4.8
	18	1300	360	27	5.4
	20	1200	380	30	6
	3	19000	1100	4.5	1.5
	4	14000	1100	6	2
	5	11000	1100	7.5	2.5
	6	9500	1100	9	3
	7	8200	1100	10.5	3.5
	8	7200	1300	12	4
Rame, Lega di rame	9	6400	1300	13.5	4.5
2392 311 21112	10	5700	1200	15	5
	12	4800	1200	18	6
	14	4100	1100	21	7
	16	3600	1000	24	8
	18	3200	960	27	9
	20	2900	920	30	10

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар	ae
	3	13000	620	4.5	1.5
	4	9500	610	6	2
	5	7600	610	7.5	2.5
	6	6400	610	9	3
	7	5500	620	10.5	3.5
Acciaio al carbonio,	8	4800	670	12	4
Acciaio at carbonio, Acciaio legato,	9	4200	670	13.5	4.5
Acciaio da costruzione	10	3800	670	15	5
	12	3200	610	18	6
	14	2700	560	21	7
	16	2400	540	24	8
	18	2100	500	27	9
	20	1900	480	30	10
P	3	11000	430	4.5	1.5
	4	8000	430	6	2
	5	6400	430	7.5	2.5
	6	5300	450	9	3
	7	4500	480	10.5	3.5
Acciaio pretemprato,	8	4000	510	12	4
Acciaio al carbonio,	9	3500	500	13.5	4.5
Acciaio legato, Leghe di acciaio per utensili	10	3200	510	15	5
Legile di accialo per dierisiti	12	2700	470	18	6
	14	2300	440	21	7
	16	2000	410	24	8
	18	1800	400	27	9
	20	1600	380	30	10
	3	8500	280	4.5	1.5
	4	6400	280	6	2
	5	5100	280	7.5	2.5
M .	6	4200	300	9	3
	7	3600	320	10.5	3.5
A a sini in a natida bili a contanta	8	3200	360	12	4
Acciai inossidabili austenico, ferritico e martensitico,	9	2800	360	13.5	4.5
Leghe di titanio	10	2500	360	15	5
	12	2100	340	18	6
S	14	1800	320	21	7
	16	1600	320	24	8
	18	1400	310	27	9
	20	1300	330	30	10

VQSVR - CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар	ae
	3	7400	240	4.5	0.9
	4	5600	240	6	1.2
	5	4500	250	7.5	1.5
	6	3700	270	9	1.8
Acciai inossidabili Lemprati,	7	3200	290	10.5	2.1
	8	2800	320	12	2.4
	9	2500	320	13.5	2.7
Lega di cromo cobalto	10	2200	310	15	3
	12	1900	300	18	3.6
	14	1600	280	21	4.2
	16	1400	280	24	4.8
	18	1200	270	27	5.4
	20	1100	280	30	6
	3	15000	720	4.5	1.5
	4	11000	700	6	2
	5	8900	720	7.5	2.5
	6	7400	710	9	3
	7	6400	720	10.5	3.5
	8	5600	780	12	4
Rame, Lega di rame	9	5000	800	13.5	4.5
Lega arrame	10	4500	790	15	5
	12	3700	710	18	6
	14	3200	670	21	7
	16	2800	630	24	8
	18	2500	600	27	9
	20	2200	560	30	10

1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

2. Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.

3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.

4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

FRESATURA DI CAVE

CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар
	3	13000	720	3
	4	9500	720	4
	5	7600	720	5
	6	6400	720	6
	7	5500	770	7
Acciaio al carbonio,	8	4800	800	8
Acciaio legato,	9	4200	810	9
Acciaio da costruzione	10	3800	800	10
	12	3200	750	12
	14	2700	670	14
	16	2400	620	16
	18	2100	570	18
	20	1900	540	20
P	3	11000	440	3
	4	8000	450	4
	5	6400	460	5
	6	5300	450	6
	7	4500	470	7
Acciaio pretemprato,	8	4000	480	8
Acciaio al carbonio, Acciaio legato,	9	3500	490	9
Leghe di acciaio per utensili	10	3200	520	10
· ·	12	2700	480	12
	14	2300	420	14
	16	2000	380	16
	18	1800	380	18
	20	1600	350	20
	3	8500	340	3
	4	6400	340	4
· ·	5	5100	300	5
M	6	4200	310	6
	7	3600	330	7
Acciai inossidabili austenico,	8	3200	350	8
Ferritico e martensitico,	9	2800	350	9
Leghe di titanio	10	2500	340	10
	12	2100	340	12
S	14	1800	300	14
	16	1600	290	16
	18	1400	260	18
	20	1300	260	20
				1/2

VQSVR - FRESATURA DI CAVE - CONDIZIONI DI TAGLIO AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ар
	3	6400	250	1.5
	4	4800	250	2
	5	3800	230	2.5
	6	3200	240	3
	7	2700	250	3.5
Acciai inossidabili	8	2400	260	4
temprati, Lega di cromo cobalto	9	2100	260	4.5
	10	1900	260	5
	12	1600	260	6
	14	1400	240	7
	16	1200	220	8
	18	1100	210	9
	20	950	190	10
	3	16000	890	3
	4	12000	910	4
	5	9500	900	5
	6	8000	900	6
	7	6800	950	7
	8	6000	1000	8
Rame, Lega di rame	9	5300	1000	9
Lega di Fame	10	4800	1000	10
	12	4000	940	12
	14	3400	840	14
	16	3000	780	16
	18	2700	730	18
	20	2400	680	20

CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар
	3	11000	490	3
	4	8000	490	4
	5	6400	490	5
	6	5300	480	6
	7	4500	500	7
Acciaio al carbonio,	8	4000	530	8
Acciaio legato,	9	3500	540	9
Acciaio da costruzione	10	3200	540	10
	12	2700	510	12
	14	2300	460	14
	16	2000	410	16
	18	1800	390	18
	20	1600	360	20
P -	3	8500	300	3
	4	6400	310	4
	5	5100	310	5
	6	4200	300	6
	7	3600	320	7
Acciaio pretemprato,	8	3200	330	8
Acciaio al carbonio, Acciaio legato,	9	2800	330	9
Leghe di acciaio per utensili	10	2500	330	10
	12	2100	320	12
	14	1800	300	14
	16	1600	290	16
	18	1400	260	18
	20	1300	260	20
	3	6400	200	3
	4	4800	200	4
	5	3800	180	5
M	6	3200	190	6
	7	2700	200	7
Acciai inossidabili austenico,	8	2400	210	8
ferritico e martensitico,	9	2100	210	9
Leghe di titanio	10	1900	210	10
	12	1600	210	12
S	14	1400	190	14
	16	1200	170	16
	18	1100	170	18
	20	950	150	20

VQSVR - CONDIZIONI DI TAGLIO PER SCOPI GENERICI

Materiale	DC	n	Vf	ар
	3	5300	170	1.5
	4	4000	170	2
	5	3200	150	2.5
	6	2700	160	3
	7	2300	170	3.5
Acciai inossidabili	8	2000	180	4
temprati,	9	1800	180	4.5
ga di cromo cobalto	10	1600	180	5
	12	1300	170	6
	14	1100	150	7
	16	990	140	8
	18	880	130	9
	20	800	130	10
	3	13000	580	3
	4	9500	580	4
	5	7600	580	5
	6	6400	580	6
	7	5500	620	7
	8	4800	640	8
Rame, Lega di rame	9	4200	650	9
Lega di Fame	10	3800	640	10
	12	3200	600	12
	14	2700	540	14
	16	2400	500	16
	18	2100	460	18
	20	1900	430	20

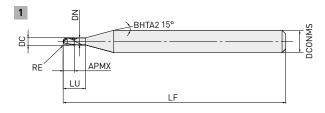
1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

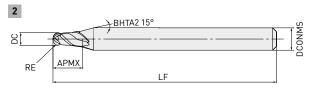
4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

^{2.} Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.

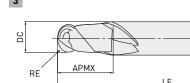
^{3.} Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.

VQN2MB





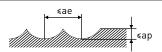
DCONMS


TESTA SEMISFERICA, LUNGHEZZA DI TAGLIO MEDIA, 2 TAGLIENTI

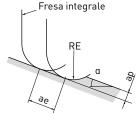
RE≤6

±0.010 DCONMS=6 8<DCONMS<10 DCONMS=12 0 0 0 -0.005 -0.006 -0.008

- Il rivestimento a base (Al, Ti, Si)N assicura un'eccellente resistenza all'usura ed alle scheggiature nella lavorazione di superleghe resistenti
- Gli angoli di spoglia del tagliente principale e la geometria della testa semisferica sono stati ottimizzati per migliorarne la robustezza.


Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	LU	DN	DCONMS	ZEFP	Tipo
VQN2MBR0050	•	1	0.5	1	60	4	0.94	6	2	1
VQN2MBR0100	•	2	1.0	2	60	6	1.9	6	2	1
VQN2MBR0150	•	3	1.5	3	60	8	2.9	6	2	1
VQN2MBR0200	•	4	2.0	8	60	_	_	6	2	2
VQN2MBR0250	•	5	2.5	12	60	_	_	6	2	2
VQN2MBR0300	•	6	3.0	12	60	_	_	6	2	3
VQN2MBR0400	•	8	4.0	14	70	_	_	8	2	3
VQN2MBR0500	•	10	5.0	18	80	_	_	10	2	3
VQN2MBR0600	•	12	6.0	22	80	_	_	12	2	3
										1/1

102 Vc


VQN2MB

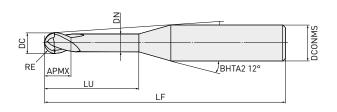
CONDIZIONI DI TAGLIO RACCOMANDATE

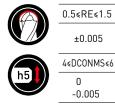
		a ≤1	15°	a>1	5°		
Materiale	RE	n	f	n	f	ар	ae
	0.5	12700	640	12700	760	0.1	0.25
	1.0	6300	320	6300	380	0.2	0.50
	1.5	4200	250	4200	250	0.3	0.75
Superlega a base nichel resistente al calore	2.0	3100	190	3100	220	0.4	1.00
	2.5	2500	180	2500	200	0.5	1.25
Inconel®718, Inconel®713C,	3.0	2100	170	2100	210	0.6	1.50
WASPALOY®, ecc - -	4.0	1500	130	1500	160	0.8	2.00
	5.0	1200	130	1200	140	1.0	2.50
	6.0	1000	110	1000	120	1.2	3.00

- 1. Per le superleghe resistenti al calore è efficace l'utilizzo di un refrigerante solubile in acqua.
- 2. Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e la velocità di avanzamento.
- 3. Si possono verificare vibrazioni se la rigidità della macchina o del pezzo da lavorare è bassa. In questo caso, ridurre proporzionalmente il numero di giri e la velocità di avanzamento.
- 4. α è l'angolo di inclinazione della superficie lavorata.

Ae: passo laterale

VQ2XLB





TESTA SEMISFERICA, TAGLIENTE CORTO, 2 TAGLIENTI, RASTREMAZIONE LUNGA

S

• Il rivestimento SMART MIRACLE offre una migliore resistenza all'usura nella lavorazione di materiali difficili da tagliare.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	LU	DN	ВНТА2	B2	DCONMS	ZEFP
VQ2XLBR0050N080	•	1	0.5	0.75	50	8	0.94	15°	6.4	4	
VQ2XLBR0050N100	•	1	0.5	0.75	50	10	0.94	15°	5.6	4	
VQ2XLBR0050N080S06	•	1	0.5	0.75	50	8	0.94	15°	8.3	6	
VQ2XLBR0050N100S06	•	1	0.5	0.75	55	10	0.94	15°	7.5	6	
VQ2XLBR0050N120S06	•	1	0.5	0.75	55	12	0.94	15°	6.8	6	
VQ2XLBR0075N100S06	•	1.5	0.75	1.13	55	10	1.44	15°	7.2	6	
VQ2XLBR0075N120S06	•	1.5	0.75	1.13	55	12	1.44	15°	6.5	6	2
VQ2XLBR0100N100	•	2	1	1.5	50	10	1.9	15°	4.5	4	Z
VQ2XLBR0100N100S06	•	2	1	1.5	55	10	1.9	15°	6.9	6	
VQ2XLBR0100N120	•	2	1	1.5	50	12	1.9	15°	3.9	4	
VQ2XLBR0100N120S06	•	2	1	1.5	55	12	1.9	15°	6.1	6	
VQ2XLBR0150N120	•	3	1.5	2.3	55	12	2.9	15°	5.3	6	
VQ2XLBR0150N140	•	3	1.5	2.3	60	14	2.9	15°	4.7	6	
VQ2XLBR0150N160	•	3	1.5	2.3	60	16	2.9	15°	4.3	6	

104 (Vc)

VQ2XLB

CONDIZIONI DI TAGLIO RACCOMANDATE

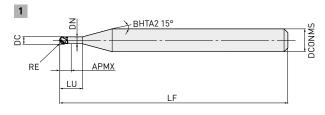
Materiale	RE	LU	n	Vc	Vf	ар	ae
	0.5	8	32000	100	2500	0.05	0.1
	0.5	10	24000	75	1500	0.05	0.1
	0.5	12	24000	75	1500	0.03	0.1
	0.75	10	21000	100	2100	0.13	0.3
Leghe di titanio	0.75	12	16000	75	1500	0.13	0.3
•	1	10	16000	100	1800	0.20	0.5
	1	12	16000	100	1800	0.20	0.5
	1.5	12	10000	100	1600	0.30	0.8
	1.5	14	10000	100	1600	0.30	0.8
	1.5	16	10000	100	1600	0.30	0.8
	0.5	8	25000	80	2000	0.05	0.1
	0.5	10	19000	60	1500	0.05	0.1
	0.5	12	19000	60	1500	0.03	0.1
	0.75	10	17000	80	1700	0.08	0.1
	0.75	12	13000	60	1200	0.08	0.1
Leghe di cromo-cobalto	1	10	13000	80	1500	0.2	0.5
	1	12	13000	80	1500	0.2	0.5
	1.5	12	8500	80	1300	0.3	0.8
	1.5	14	8500	80	1300	0.3	0.8
	1.5	16	8500	80	1300	0.3	0.8
	0.5	8	27000	80	1600	0.08	0.1
	0.5	10	19000	60	1200	0.08	0.1
	0.5	12	19000	60	1200	0.04	0.1
	0.75	10	25000	120	2000	0.13	0.2
	0.75	12	21000	100	1600	0.13	0.2
Titanio puro	1	10	32000	200	2500	0.32	0.8
	1	12	29000	180	1700	0.32	0.8
	1.5	12	21000	200	1600	0.48	1.2
	1.5	14	21000	200	1600	0.48	1.2
	1.5	16	21000	200	1600	0.48	1.2

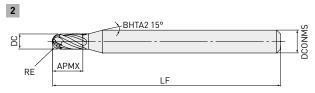
^{1.} Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, i tastatori a contatto elettrico potrebbero non funzionare. Quando si misura la lunghezza dell'utensile, usare un tastatore di tipo a contatto meccanico o di tipo laser.

^{2.} Durante il taglio di leghe di titanio, è particolarmente efficace l'utilizzo di fluido di taglio non solubile in acqua.

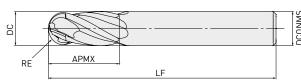
^{3.} Se la profondità di taglio è inferiore, è possibile aumentare il numero di giri e la velocità di avanzamento.

VQN4MB





TESTA SEMISFERICA, LUNGHEZZA DI TAGLIO MEDIA, 4 TAGLIENTI


S

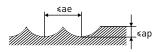
RE≤6

-0.005

-0.006

-0.008

- Il rivestimento a base (Al, Ti, Si)N assicura un'eccellente resistenza all'usura ed alle scheggiature nella lavorazione di superleghe resistenti al calore.
- L'affilatura a 4 taglienti vanta un'eccellente evacuazione del truciolo ed è ideale per la sgrossatura.


Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	LU	DN	DCONMS	ZEFP	Tipo
VQN4MBR0100	•	2	1.0	2	60	6	1.9	6	4	1
VQN4MBR0150	•	3	1.5	3	60	8	2.9	6	4	1
VQN4MBR0200	•	4	2.0	8	60	_	_	6	4	2
VQN4MBR0250	•	5	2.5	12	60	_	_	6	4	2
VQN4MBR0300	•	6	3.0	12	60	_	_	6	4	3
VQN4MBR0400	•	8	4.0	14	70	_	_	8	4	3
VQN4MBR0500	•	10	5.0	18	80	_	_	10	4	3
VQN4MBR0600	•	12	6.0	22	80	_	_	12	4	3
										1/1


VQN4MB

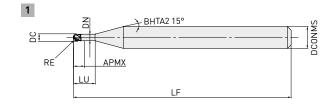
CONDIZIONI DI TAGLIO RACCOMANDATE

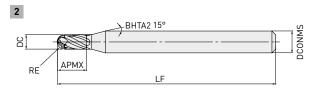
		a≤15°		α>1	15°			
Materiale	RE	n	f	n	f	ар	ae	
	1.0	6300	380	6300	510	0.2	0.50	
	1.5	4200	340	4200	420	0.3	0.75	
Superleghe a base nichel resistenti	2.0	3100	320	3100	380	0.4	1.00	
al calore	2.5	2500	250	2500	310	0.5	1.25	
Inconel®718, Inconel®713C, WASPALOY®, ecc.	3.0	2100	210	2100	250	0.6	1.50	
	4.0	1500	160	1500	190	0.8	2.00	
	5.0	1200	150	1200	200	1.0	2.50	
	6.0	1000	150	1000	170	1.2	3.00	

- 1. Per la lavorazione di superleghe resistenti al calore è efficace l'utilizzo di un refrigerante solubile in acqua.
- Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e la velocità di avanzamento.
 Si possono avere vibrazioni se la rigidità della macchina o del pezzo da lavorare è bassa. In questo caso, ridurre proporzionalmente il numero di giri e la velocità di avanzamento.
- 4. a è l'angolo di inclinazione della superficie lavorata.

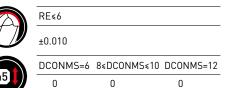
Ae:passo laterale

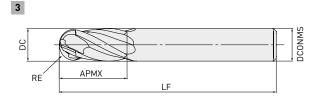
VQN4MBF





TESTA SEMISFERICA, LUNGHEZZA DI TAGLIO MEDIA, 4 TAGLIENTI


S

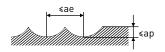


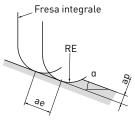
-0.006

-0.005

- Il rivestimento a base (Al, Ti, Si)N assicura un'eccellente resistenza all'usura ed alle scheggiature nella lavorazione di superleghe resistenti al calore.
- L'affilatura a 4 taglienti è ideale anche per la lavorazione a 5 assi.

-0.008


Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	LU	DN	DCONMS	ZEFP	Tipo
VQN4MBFR0100	•	2	1.0	2	60	6	1.9	6	4	1
VQN4MBFR0150	•	3	1.5	3	60	8	2.9	6	4	1
VQN4MBFR0200	•	4	2.0	8	60	_	_	6	4	2
VQN4MBFR0250	•	5	2.5	12	60	_	_	6	4	2
VQN4MBFR0300	•	6	3.0	12	60	_	_	6	4	3
VQN4MBFR0400	•	8	4.0	14	70	_	_	8	4	3
VQN4MBFR0500	•	10	5.0	18	80	_	_	10	4	3
VQN4MBFR0600	•	12	6.0	22	80	_	_	12	4	3
										1/1


VQN4MBF

CONDIZIONI DI TAGLIO RACCOMANDATE

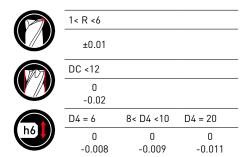
Materiale	RE	α≤15°			α>15°			
		n	f	ae	n	f	ae	– ap
Superleghe a base nichel resistenti al calore Inconel®718, Inconel®713C, WASPALOY®, ecc.	1.0	6300	180	0.40	6300	310	0.50	0.2
	1.5	4200	170	0.60	4200	340	0.75	0.3
	2.0	3100	190	0.80	3100	320	1.00	0.4
	2.5	2500	150	1.00	2500	250	1.25	0.5
	3.0	2100	170	1.20	2100	250	1.50	0.6
	4.0	1500	130	1.60	1500	190	2.00	0.8
	5.0	1200	100	2.00	1200	200	2.50	1.0
	6.0	1000	130	2.40	1000	170	3.00	1.2

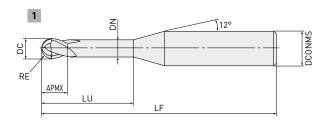
- 1. Per le superleghe resistenti al calore è efficace l'utilizzo di un refrigerante solubile in acqua.
- 2. Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e la velocità di avanzamento.
- 3. Si possono avere vibrazioni se la rigidità della macchina o del pezzo da lavorare è bassa. In questo caso, ridurre proporzionalmente il numero di giri e la velocità di avanzamento.
- 4. a è l'angolo di inclinazione della superficie lavorata.

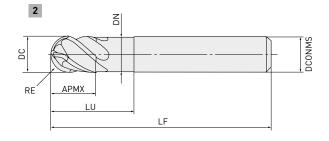
Ae: passo laterale

VQ4SVB

TESTA SEMISFERICA, LUNGHEZZA TAGLIENTE CORTA, 4 TAGLIENTI, CURVA VARIABILE







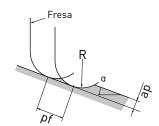
- Fresa a testa semisferica con controllo delle vibrazioni e 4 taglienti con rivestimento VQ.
- Ideale per lavorazioni di finitura.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	LU	DN	DCONMS	ZEFP	Tipo
VQ4SVBR0100	•	2	1	3	50	5	1.9	6	4	1
VQ4SVBR0150	•	3	1.5	4.5	50	7.5	2.9	6	4	1
VQ4SVBR0200	•	4	2	6	50	10	3.9	6	4	1
VQ4SVBR0250	•	5	2.5	7.5	50	12.5	4.9	6	4	1
VQ4SVBR0300	•	6	3	9	50	15	5.85	6	4	2
VQ4SVBR0400	•	8	4	12	60	20	7.85	8	4	2
VQ4SVBR0500	•	10	5	15	70	25	9.7	10	4	2
VQ4SVBR0600	•	12	6	18	75	30	11.7	12	4	2
										1/1

VQ4SVB

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO (SCANALATURE)


Matariala	DE.	a≤ 1	5°	a>'	15°		nf
Materiale	RE	n	Vf	n	Vf	ар	pf
	R 1	40000	8000	40000	8000	0.1	0.5
	R 1.5	32000	7700	32000	7700	0.2	0.7
Acciaio al carbonio,	R 2	24000	5800	24000	5800	0.3	1
Acciaio legato,	R 2.5	19000	5300	19000	5300	0.4	1.2
Acciaio da costruzione,	R 3	16000	4800	16000	4800	0.5	1.5
Acciaio pretemprato	R 4	12000	4300	12000	4300	0.8	2
Acciaio inossidabile austenico,	R 5	9600	4100	9600	4100	1	2.5
	R 6	8000	4000	8000	4000	1.2	3
	R 1	36000	6500	24000	2900	0.1	0.5
	R 1.5	24000	4800	16000	1900	0.2	0.7
	R 2	18000	4000	12000	1700	0.3	1
Lega di titanio, Acciai inossidabili temprati,	R 2.5	14400	3500	9600	1500	0.4	1.2
Lega di cromo cobalto,	R 3	12000	3200	8000	1400	0.5	1.5
Acciai inossidabili, ferritici e martensitici	R 4	9000	3200	6000	1400	0.8	2
Territici e martensitici	R 5	7200	3000	4800	1300	1	2.5
	R 6	6000	3000	4000	1300	1.2	3
	R 1	40000	8000	38000	4500	0.1	0.5
	R 1.5	38000	9100	25000	3800	0.2	0.7
	R 2	29000	7000	19000	3300	0.3	1
Rame,	R 2.5	23000	6400	15000	3100	0.4	1.2
Lega di rame	R 3	19000	5700	13000	2600	0.5	1.5
	R 4	14000	5000	9600	2300	0.8	2
	R 5	12000	5100	7700	2200	1	2.5
	R 6	9600	4800	6400	2200	1.2	3
	R 1	9600	960	6400	510	0.08	0.2
	R 1.5	6400	640	4200	340	0.1	0.3
	R 2	4800	580	3200	260	0.1	0.4
	R 2.5	3800	530	2500	250	0.2	0.5
Leghe resistenti al calore	R 3	3200	500	2100	210	0.2	0.6
	R 4	2400	430	1600	190	0.4	0.8
	R 5	2000	420	1300	180	0.5	1
	R 6	1700	350	1100	150	0.6	1.2

1. Il rivestimento VQ ha una bassa conduttività elettrica; pertanto un azzeratore di tipo meccanico (trasmissione elettrica) potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto interno (tipo non elettrico) o un azzeratore di tipo laser.

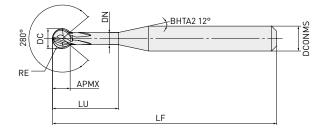
 Il taglio efficace di acciaio inossidabile, leghe di titanio e leghe resistenti al calore ecc., può essere ottenuto con l'uso di refrigeranti emulsionabili.

3. Si possono verificare vibrazioni se la rigidità della macchina e il metodo di bloccaggio sono insufficienti. In tali casi l'avanzamento e la velocità devono essere ridotti proporzionalmente.

4. Se la profondità di taglio è inferiore a quella illustrata, è possibile aumentare il numero di giri e la velocità di avanzamento.

VQ4WB

FRESA INTEGRALE LOLLIPOP MULTIFUNZIONE, TAGLIENTE CORTO, 4 TAGLIENTI



0.5<RE<3 ±0.01

4≼DCONMS≼6 0 -0.008

- Fresa integrale con testa semisferica multifunzionale con geometria lollipop per la lavorazione a 5 assi.
- Ideale per le operazioni di sbavatura in tirata, le lavorazioni in sottosquadra e le lavorazioni di condotti.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LF	LU	DN	DCONMS	ZEFP
VQ4WBR0050N06E280	•	1	0.5	0.88	50	6	0.62	4	4
VQ4WBR0065N08E280	•	1.3	0.65	1.15	50	8	0.81	4	4
VQ4WBR0090N06E280	•	1.8	0.9	1.59	50	6	1.13	4	4
VQ4WBR0100N06E280	•	2	1	1.77	60	6	1.26	6	4
VQ4WBR0140N16E280	•	2.8	1.4	2.47	60	16	1.77	6	4
VQ4WBR0150N08E280	•	3	1.5	2.65	60	8	1.9	6	4
VQ4WBR0190N12E280	•	3.8	1.9	3.36	60	12	2.37	6	4
VQ4WBR0200N12E280	•	4	2	3.53	60	12	2.54	6	4
VQ4WBR0240N16E280	•	4.8	2.4	4.24	70	16	3.06	6	4
VQ4WBR0250N12E280	•	5	2.5	4.42	80	12	3.19	6	4
VQ4WBR0300N12E280	•	6	3	5.3	80	12	3.83	6	4
									1/1

1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, i tastatori a contatto elettrico potrebbero non funzionare.

. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto meccanico o di tipo laser.

Ordini speciali: Per prodotti non standard non riportati sopra, contattare il proprio referente MMC Italia.

VQ4WB

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA DI SMUSSI (SBAVATURA)

Materiale	DC	RE	n	Vf	Max. CF
	1.0	0.5	19000	300	0.10
_	1.3	0.65	15000	420	0.13
	1.8	0.9	11000	570	0.18
	2.0	1.0	9500	610	0.20
Acciai da costruzione,	2.8	1.4	6800	760	0.28
leghe di rame,	3.0	1.5	6400	770	0.30
acciai pretemprati	3.8	1.9	5000	840	0.38
(-45HRC)	4.0	2.0	4800	880	0.40
	4.8	2.4	4000	960	0.48
_	5.0	2.5	3800	970	0.50
	6.0	3.0	3200	1000	0.60
	1.0	0.5	14000	220	0.10
	1.3	0.65	11000	310	0.13
-	1.8	0.9	8000	420	0.18
Acciai inossidabili austenitici,	2.0	1.0	7200	460	0.20
ferritici e martensitici	2.8	1.4	5100	570	0.28
Acciai inossidabili temprati per precipitazione,	3.0	1.5	4800	580	0.30
leghe di cromo-cobalto,	3.8	1.9	3800	640	0.38
Leghe di titanio	4.0	2.0	3600	660	0.40
	4.8	2.4	3000	720	0.48
	5.0	2.5	2900	740	0.50
	6.0	3.0	2400	770	0.60

FRESATURA INTERNA DI PROFILI/SOTTOSQUADRA

	Materiale	DC	RE	n	Vf	ae
F	A - si si de contaccione	2.0	1.0	9500	460	0.03
	Acciai da costruzione, acciai al carbonio,	3.0	1.5	6400	560	0.10
	leghe di rame, acciai pretemprati	4.0	2.0	4800	650	0.14
٨		5.0	2.5	3800	730	0.18
	(-45HRC)	6.0	3.0	3200	770	0.22
N	Acciai inossidabili austenitici,	2.0	1.0	7200	290	0.03
N	ferritici e martensitici	3.0	1.5	4800	350	0.10
	Acciai inossidabili temprati per precipitazione, leghe di cromo-cobalto,	4.0	2.0	3600	390	0.14
5		5.0	2.5	2900	440	0.18
	Leghe di titanio	6.0	3.0	2400	460	0.22

ap<0

14

VQ4WB

FRESATURA DI CAVE RAGGIATE

	Materiale	DC	RE	n	Vf	ae	Max. ae
F	A saisi da sastruriana	2.0	1.0	9500	300	0.03	0.06
	Acciai da costruzione, acciai al carbonio,	3.0	1.5	6400	380	0.10	0.20
	leghe di rame,	4.0	2.0	4800	440	0.14	0.28
Ν	acciai pretemprati (-45HRC)	5.0	2.5	3800	490	0.18	0.54
	(-45HKC)	6.0	3.0	3200	510	0.22	0.88
N	Acciai inossidabili austenitici,	2.0	1.0	7200	140	0.03	0.06
1	ferritici e martensitici Acciai inossidabili temprati per precipitazione,	3.0	1.5	4800	190	0.10	0.20
		4.0	2.0	3600	230	0.14	0.28
S		5.0	2.5	2900	260	0.18	0.54
Ī	Leghe di titanio	6.0	3.0	2400	270	0.22	0.88

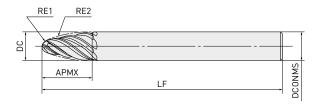
1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; di conseguenza, i tastatori a contatto elettrico potrebbero non funzionare.

. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto meccanico o di tipo laser.

- Se la profondità di taglio è inferiore a quella indicata in questa tabella, è possibile aumentare la velocità di avanzamento.
 Se la rigidità della macchina o lo staffaggio del pezzo da lavorare sono molto ridotti, o se si producono vibrazioni, ridurre proporzionalmente il numero di giri e la velocità di avanzamento.
- 4. Per le misure RE 0,5, 0,65, 0,9, 1,4, 1,9 e RE 2,4 che hanno lunghezze di rastremazione elevate, si sconsiglia la fresatura interna dei profili e la fresatura di cave raggiate.
- 5. La massima profondità di taglio radiale consentita (max ae) evita qualsiasi interferenza tra il pezzo da lavorare e la rastremazione dell'utensile. Asportare fino alla max ae in 2-4 passate.

VQT6UR

FORMA A BARILE, LUNGHEZZA DI TAGLIO MEDIA, 6 TAGLIENTI



	RE1 ≤4	RE2 ≤100
	±0.01	±0.01
	DCONMS ≤10	DCONMS = 12
h6	0	0
	- 0.009	- 0.009

Disponibilità	DC	RE1	RE2	АРМХ	LF	DCONMS	ZEFP
•	8	2	75	21	90	8	
•	10	2	85	26	100	10	,
•	10	3	75	22	100	10	6
•	12	4	100	25	110	12	
	5	© 00 00 00 00 00 00 00 00 00 00 00 00 00	B C ■ 8 2 ■ 10 2 ■ 10 3	B DC RE1 RE2 ● 8 2 75 ● 10 2 85 ● 10 3 75	B DC RE1 RE2 APMX ● 8 2 75 21 ● 10 2 85 26 ● 10 3 75 22	B DC RE1 RE2 APMX LF ● 8 2 75 21 90 ● 10 2 85 26 100 ● 10 3 75 22 100	B DC RE1 RE2 APMX LF DCONMS ● 8 2 75 21 90 8 ● 10 2 85 26 100 10 ● 10 3 75 22 100 10

1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta; quindi, l'azzeratore a contatto elettrico potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto meccanico o di tipo laser.

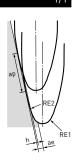
VQT6UR

CONDIZIONI DI TAGLIO RACCOMANDATE

ANGOLO EFFETTIVO

Fare riferimento alla tabella seguente per l'uso del raggio di punta (RE1) e del raggio tangenziale (RE2).

RE2 FRESATURA LATERALE CON L'USO DEL RAGGIO TANGENZIALE


0.4	R	aggio di punta	Ra	ggio tangenziale	Annala Matha
Codice ordinazione	RE1	Angolo effettivo	RE2	Angolo effettivo	Angolo effettivo
VQT6URR020R075S08	2	76.6°	75	13.4°	RE2
VQT6URR020R085S10	2	74.5°	85	15.5°	
VQT6URR030R075S10	3	76.4°	75	13.6°	RE1
VQT6URR040R100S12	4	78.3°	100	11.7°	

	Materiale	DC	RE2	n	Vf	ар	ae
		8	75	8000	2400	0.78	
_	Acciaio dolce (<180HB)	10	85	6400	1900	0.83	0.005.00
P	Acciaio al carbonio, ghisa (180 – 280HB)	10	75	6400	1900	0.78	0.005 – 0.3
		12	100	5300	1600	0.89	_
N		8	75	3200	770	0.78	
IV	Acciaio inossidabile austenitico	10	85	2500	600	0.83	0.005.00
	(<200HB) Leghe di titanio	10	75	2500	600	0.78	0.005 – 0.3
٥	.3	12	100	2100	500	0.89	_
		8	75	16000	4800	0.78	
	N Leghe di allumino (Si <5 %)	10	85	13000	3900	0.83	0.005.00
- IN		10	75	13000	3900	0.78	0.005 – 0.3
		12	100	11000	3300	0.89	_

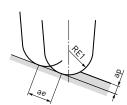
1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta, quindi l'azzeratore a contatto elettrico potrebbe non funzionare.

Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto meccanico o di tipo laser. 2. Si consiglia di utilizzare questo utensile solo per applicazioni di finitura.

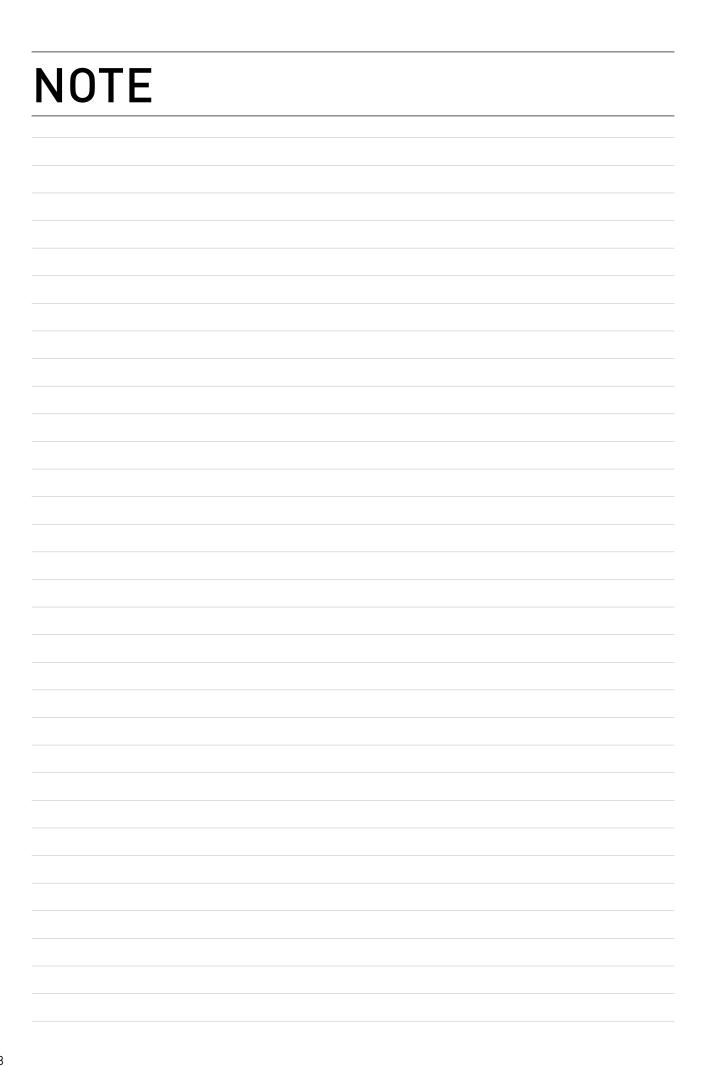
3. Il contatto dell'utensile è diverso per il raggio di punta e per il raggio tangenziale a seconda della geometria della lavorazione e degli angoli di inclinazione. Selezionare le condizioni di taglio adatte in base all'area di contatto dell'utensile.

TABELLA DI CALCOLO DELLA PROFONDITÀ DI TAGLIO IN BASE AL RAGGIO TANGENZIALE E ALL'ALTEZZA DELLA CUSPIDE (H)

Materiale	RE2	Altezza della cuspide (h)	0.0001	0.0003	0.0005	0.0008	0.001	0.003	0.005	0.008
VQT6URR020R075S08	75		0.245	0.424	0.548	0.693	0.775	1.342	1.732	2.191
VQT6URR020R085S10	75		0.245	0.424	0.548	0.693	0.775	1.342	1.732	2.191
VQT6URR030R075S10	85	ар	0.261	0.452	0.583	0.738	0.825	1.428	1.844	2.332
VQT6URR040R100S12	100		0.283	0.49	0.632	0.8	0.894	1.549	2	2.53


VQT6UR

FRESATURA CON L'USO DEL RAGGIO DI PUNTA


Materiale	DC	RE2	n	Vf	ар	ae
	8	2	16000	2400	0.4	1
Acciaio dolce (<180HB)	10	2	16000	2400	0.4	1
P Acciaio al carbonio, ghisa (180 – 280HB)	10	3	11000	1700	0.6	1.5
g,	12	4	8000	1200	0.8	2
.,	8	2	6400	580	0.4	1
Acciaio inossidabile austenitico	10	2	6400	580	0.4	1
(<200HB) Leghe di titanio	10	3	4200	380	0.6	1.5
5	12	4	3200	290	0.8	2
	8	2	32000	4800	0.4	1
N. Laska di allumaina (Ci. E.O.)	10	2	32000	4800	0.4	1
N Leghe di allumino (Si <5 %)	10	3	21000	3200	0.6	1.5
	12	4	16000	2400	0.8	2

1. Il rivestimento SMART MIRACLE ha una conduttività elettrica molto ridotta, quindi l'azzeratore di tipo a contatto elettrico potrebbe non funzionare. Quando si misura la lunghezza dell'utensile, usare un azzeratore di tipo a contatto elettrico di tipo laser.

di tipo taser.
 Si consiglia di utilizzare questo utensile solo per applicazioni di finitura.
 Il contatto dell'utensile è diverso per il raggio di punta e il raggio tangenziale a seconda della geometria della lavorazione e degli angoli di inclinazione. Selezionare le condizioni di taglio adatte in base al punto di contatto dell'utensile.

NOTE		

NOTE		

FILIALI EUROPEE

GERMANY

MMC HARTMETALL GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone + 49 2159 91890 . Fax + 49 2159 918966

Email admin@mmchg.de

UK Office

MMC HARDMETAL UK LTD

1 Centurion Court, Centurion Way

Tamworth, B77 5PN Phone + 44 1827 312312

Email enquiries@mitsubishicarbide.co.uk

UK Deliveries / Returns

Unit 4 B5K Business Park, Quartz Close

Tamworth, B77 4GR

SPAIN

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2 . 46136 Museros/Valencia

Phone + 34 96 1441711

Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone + 33 1 69 35 53 53 . Fax + 33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw

Phone + 48 71335 1620 . Fax + 48 71335 1621 Email sales@mitsubishicarbide.com.pl

ITALY

MMC ITALIA S.R.L.

Viale Certosa 144 . 20156 Milano

Phone $+39\ 0293\ 77031$. Fax $+39\ 0293\ 589093$

Email info@mmc-italia.it

TURKEY

MMC HARTMETALL GMBH ALMANYA - İZMİR MERKEZ ŞUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35530 Bayraklı/İzmir

Phone + 90 232 5015000 . Fax + 90 232 5015007

Email info@mmchg.com.tr

www.mmc-carbide.com

DISTRIBUITO DA:

г

_

