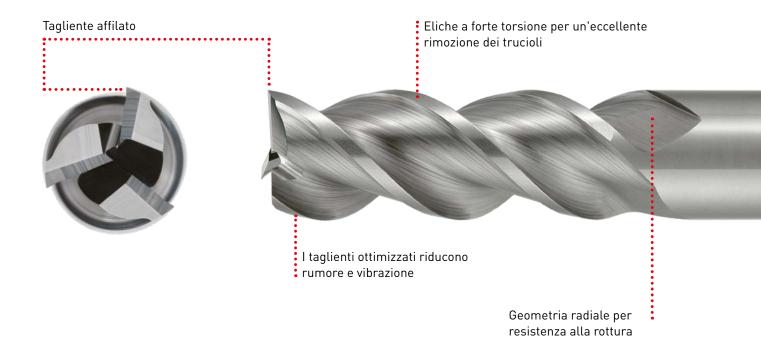
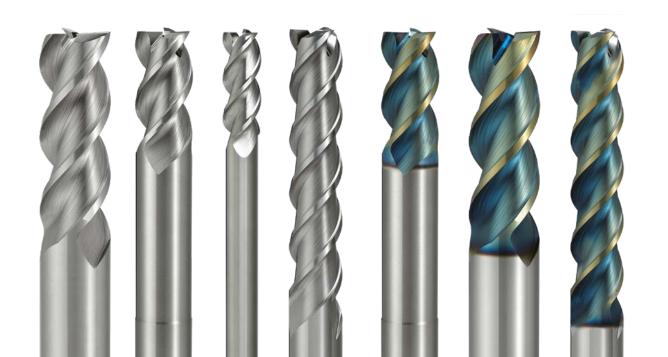
ALIMASTER

LAVORAZIONE AD ALTA EFFICIENZA DELLE LEGHE DI ALLUMINIO



C-AL/DLC-AL

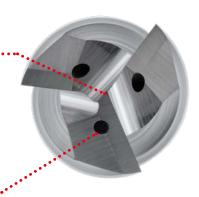
AFFILATURA ECCELLENTE E STABILITÀ DI LAVORAZIONE


Una qualità superiore del tagliente e un'eccellente evacuazione dei trucioli diminuiscono le vibrazioni e i rumori per favorire una lavorazione stabile di materiali non ferrosi.

UN'AMPIA GAMMA

Una scelta versatile di frese:

- 2 e 3 taglienti
- Lunghezza tagliente standard e lunga
- Tipologia con stelo minorato
- Gradi in metallo duro con e senza rivestimento DLC


A3SA/DLC3SA

FRESA A 3 TAGLIENTI CON FORI INTERNI ELICOIDALI PER IL PASSAGGIO DEL REFRIGERANTE CHE, INSIEME AD UNA GEOMETRIA OTTIMIZZATA DEL TAGLIENTE, CONSENTE LAVORAZIONI AD ELEVATA EFFICIENZA

TAGLIENTI CENTRALI RINFORZATI

I taglienti centrali ottimizzati garantiscono robustezza ed affidabilità anche durante la fresatura a tuffo.

USO DEI FORI DI REFRIGERAZIONE ELICOIDALI

Lo scarico del truciolo durante la lavorazione a tuffo, la rampa e la lavorazione in cava dal pieno è stato notevolmente migliorato, garantendo un taglio stabile e ad alta efficienza.

I fori elicoidali mantengono un flusso costante di refrigerante anche dopo la riaffilatura.

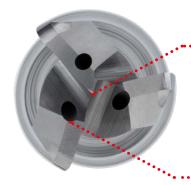
DLC

Il rivestimento in DLC, appositamente sviluppato, garantisce un'eccellente resistenza all'incollamento nelle lavorazioni alle alte velocità e quando si riduce l'apporto di refrigerante. Inoltre, il basso coefficiente di attrito riduce la resistenza al taglio.

GEOMETRIA DEL TAGLIENTE DEDICATA

La geometria della sezione trasversale dei taglienti è perfetta per un'efficiente evacuazione dei trucioli e previene il loro intasamento, problema solitamente correlato alle lavorazioni con alti avanzamenti nelle fresature di alluminio.

ELICHE VARIABILI E LUCIDATE


La geometria ad elica variabile previene le vibrazioni e consente finiture superficiali eccellenti, mentre le superfici lucidate delle eliche prevengono la formazione del tagliente di riporto.

GEOMETRIA DI RACCORDO FINE TAGLIENTE

A3SARB/DLC3SARB

FRESA TORICA A 3 TAGLIENTI CON FORI INTERNI ELICOIDALI PER IL PASSAGGIO DEL REFRIGERANTE, CON GEOMETRIA OTTIMIZZATA DEL TAGLIENTE CHE CONSENTE LAVORAZIONI AD ELEVATA EFFICIENZA

TAGLIENTI CENTRALI RINFORZATI

I taglienti centrali ottimizzati garantiscono robustezza ed affidabilità anche durante la fresatura a tuffo.

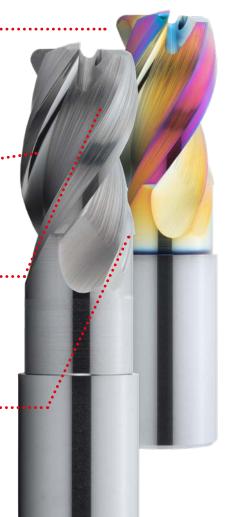
USO DEI FORI DI REFRIGERAZIONE ELICOIDALI

Lo scarico del truciolo durante la lavorazione a tuffo, la rampa e la lavorazione in cava dal pieno è stato notevolmente migliorato, garantendo un taglio stabile e ad alta efficienza. I fori elicoidali mantengono un flusso costante di refrigerante anche dopo la riaffilatura.

DLC

Il rivestimento in DLC, appositamente sviluppato, garantisce un'eccellente resistenza all'incollamento nelle lavorazioni alle alte velocità e quando si riduce l'apporto di refrigerante. Inoltre, il basso coefficiente di attrito riduce la resistenza al taglio.

ELICHE VARIABILI E LUCIDATE


La geometria ad elica variabile previene le vibrazioni e consente finiture superficiali eccellenti, mentre le superfici lucidate delle eliche prevengono la formazione del tagliente di riporto.

GEOMETRIA DEL TAGLIENTE DEDICATA

La geometria della sezione trasversale dei taglienti è perfetta per un'efficiente evacuazione dei trucioli e previene il loro intasamento, problema solitamente correlato alle lavorazioni con alti avanzamenti nelle fresature di alluminio.

GEOMETRIA DI RACCORDO FINE TAGLIENTE

ALIMASTER

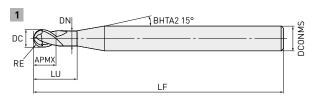
CLASSIFICAZIONE

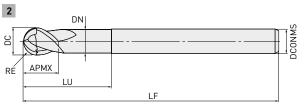
	Codice prodotto		Forma	DC	<u></u>
	FRESA INTEGR	RALE A TESTA SEMISFERICA			
	АМ2МВ	Fresa a testa semisferica, 2 taglienti, serie media, rastremata		1 – 20	7
	FRESA INTEGR	RALE A SPIGOLO			
NEW	C2MAL C3MAL	Fresa, lunghezza tagliente media, 2 e 3 taglienti, Per leghe di alluminio	266. 266.	1 – 12	9
NEW	DLC2MAL DLC3MAL	Fresa, lunghezza tagliente media, 2 e 3 taglienti, Per leghe di alluminio		1 – 12	11
NEW	C3SXAL	Fresa, lunghezza tagliente lunga, 3 taglienti, Per leghe di alluminio		3 – 12	21
NEW	DLC3SXAL	Fresa, lunghezza tagliente lunga, 3 taglienti, Per leghe di alluminio		3 – 12	22
	AM2MR	Serie media, 2 taglienti, lavorazioni generiche		3 – 25	24
	AM2SC	Serie corta, 2 taglienti, rastremata, per cave, tagliente al centro		3 – 20	26
	AM3SS	Serie corta, 3 taglienti, rastremata, lavorazioni di sgrossatura		12 - 25	28
NEW	C2XLAL C3XLAL	Fresa, 2 e 3 taglienti, rastremazione lunga, Per leghe di alluminio		1 – 2.5	30
NEW	DLC2XLAL DLC3XLAL	Fresa, 2 e 3 taglienti, rastremazione lunga, Per leghe di alluminio		1 – 2.5	32

ALIMASTER - CLASSIFICAZIONE

FRESA INTEGR	RALE A SPIGOLO			
A3SA	Fresa, lunghezza tagliente corta, 3 taglienti Rastremazione cilindrica, fori interni elicoidali per il passaggio del refrigerante		12 – 25	46
DLC3SA	Fresa, lunghezza tagliente corta, 3 taglienti Rastremazione cilindrica, fori interni elicoidali per il passaggio del refrigerante		12 – 25	48
АМЗМ Б	Serie media, 3 taglienti, lavorazioni di finitura, tagliente al centro	166	6 – 16	50
AM4MF	Serie media, 4 taglienti, lavorazioni di finitura, tagliente al centro		20 – 25	51
FRESA INTEGR	RALE TORICA			
AM2SCRB	Fresa integrale a 2 taglienti, torica, lunghezza di taglio corta, con scarico		3 – 20	52
AM3SSRB	Fresa integrale a 3 taglienti, torica, lunghezza di taglio corta, con scarico		12 - 25	55
A3SARB	Fresa torica, lunghezza tagliente corta, 3 taglienti Rastremazione cilindrica, fori interni elicoidali per il passaggio del refrigerante		12 – 25	58
DLC3SARB	Fresa torica, lunghezza tagliente corta, 3 taglienti Rastremazione cilindrica, fori interni elicoidali per il passaggio del refrigerante		12 – 25	60
FRESA INTEGR	RALE PER SGROSSATURA			
AMSR	Per sgrossatura, serie corta, rompitruciolo, 3 taglienti		20 – 25	62
AMMR	Per sgrossatura, serie corta, rompitruciolo		3 - 25	65
AMSRRB	Per sgrossatura, serie corta, rompitruciolo, torica		10 – 25	68
FRESA INTEGR	RALE A TAGLIENTE CONICO CON TESTA SEMISFERICA			
C4LATB	Fresa integrale a tagliente conico con testa semisferica, 4 taglienti		6 - 8	71
DLC4LATB	Fresa integrale a tagliente conico con testa semisferica, 4 taglienti		6 – 8	72

AM2MB

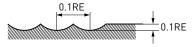




FRESA A TESTA SEMISFERICA, 2 TAGLIENTI, SERIE MEDIA, RASTREMATA

١ .	RE≼6	RE≽6	
	± 0.01	± 0.02	
	DC≤3	3 <dc<6< th=""><th>6≤DC</th></dc<6<>	6≤DC
	0	0	0
	-0 020	-በ በ28	-ሀ ሀሪዩ

- Fresa a testa semisferica ad alta precisione per alluminio.
- Per lavorazioni di elevata qualità e precisione.


Codice ordinazione	Disponibilità	DC	RE	АРМХ	LU	DN	LF	DCONMS	ZEFP	Tipo
AM2MBR0050A040	•	1	0.5	2.5	_	_	40	4	2	1
AM2MBR0100A060	•	2	1	6	_	_	60	6	2	1
AM2MBR0150A060	•	3	1.5	6	9	2.7	60	6	2	1
AM2MBR0200A060	•	4	2	6	12	3.7	60	6	2	1
AM2MBR0250A060	•	5	2.5	8	15	4.7	60	6	2	1
AM2MBR0300A060	•	6	3	10	18	5.7	60	6	2	2
AM2MBR0400A075	•	8	4	12	24	7.4	75	8	2	2
AM2MBR0500A075	•	10	5	15	30	9.4	75	10	2	2
AM2MBR0600A075	•	12	6	18	36	11.4	75	12	2	2
AM2MBR0800A100	•	16	8	24	40	15.4	100	16	2	2
AM2MBR1000A100	•	20	10	30	45	19.0	100	20	2	2

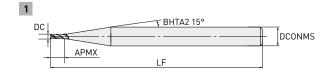
AM2MB

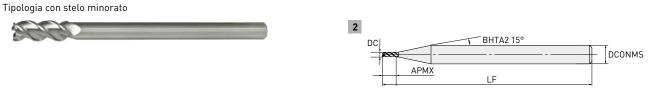
CONDIZIONI DI TAGLIO RACCOMANDATE

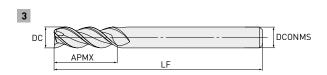
Materiale	RE	n	Vf
	1	20000	2000
	2	20000	4000
	3	20000	6000
Laga di alluminia	4	20000	7000
Lega di alluminio	5	20000	8000
	6	15000	7500
	8	12000	7200
N	10	10000	7000
IN .	1	20000	1600
	2	20000	2800
	3	20000	3200
Lega di alluminio	4	17000	4000
Lega di atturnino	5	15000	3600
	6	12000	3600
	8	10000	3600
	10	8000	3200

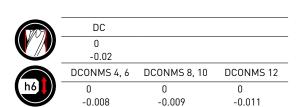
^{1.} Per la foratura, ridurre la velocità di avanzamento del 50 %.

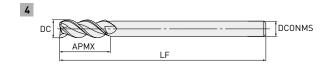
C2MAL/C3MAL






FRESA, LUNGHEZZA TAGLIENTE MEDIA, 2 E 3 TAGLIENTI, PER LEGHE DI ALLUMINIO




- Lunghezza tagliente DC x 2,5.
- Il tagliente diminuisce rumore e vibrazioni, garantendo finiture superficiali di qualità superiore.

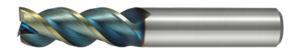
Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
C2MALD0100	•	1	2.5	45	4	2	1
C2MALD0150	•	1.5	3.7	45	4	2	1
C2MALD0200	•	2	5	45	4	2	1
C2MALD0250	•	2.5	6.3	45	4	2	1
C3MALD0100	•	1	2.5	45	4	3	2
C3MALD0150	•	1.5	3.7	45	4	3	2
C3MALD0200	•	2	5	45	4	3	2
C3MALD0250	•	2.5	6.3	45	4	3	2
C3MALD0300	•	3	7.5	50	6	3	2
C3MALD0400	•	4	10	50	6	3	2
C3MALD0500	•	5	12.5	55	6	3	2
C3MALD0600	•	6	15	55	6	3	3
C3MALD0800	•	8	20	70	8	3	3
C3MALD1000	•	10	25	75	10	3	3
C3MALD1200	•	12	30	80	12	3	3

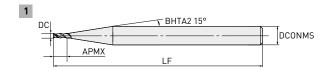
C2MAL / C3MAL - FRESA, LUNGHEZZA TAGLIENTE MEDIA, 2 E 3 TAGLIENTI, PER LEGHE DI ALLUMINIO

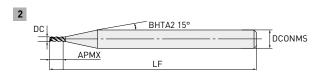
TIPOLOGIA CON STELO MINORATO

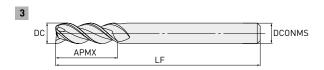
	Lità						
Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
C3MALD0700S06	•	7	17.5	80	6	3	4
C3MALD0800S06	•	8	20	110	6	3	4
C3MALD0900S08	•	9	22.5	110	8	3	4
C3MALD1000S08	•	10	25	130	8	3	4
C3MALD1100S10	•	11	28	130	10	3	4
C3MALD1200S10	•	12	30	150	10	3	4
							2/2

DLC2MAL/ DLC3MAL








FRESA, LUNGHEZZA TAGLIENTE MEDIA, 2 E 3 TAGLIENTI, PER LEGHE DI ALLUMINIO

N

	DC		
	0		
	-0.02		
	DCONMS 4, 6	DC0NMS 8, 10	DCONMS 12
h6	0	0	0
	-0.008	-0.009	-0.011

- Il tagliente diminuisce rumore e vibrazioni, garantendo finiture superficiali di qualità superiore.
- Il rivestimento DLC fornisce un'estrema resistenza all'incollamento.

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
DLC2MALD0100	•	1	2.5	45	4	2	1
DLC2MALD0150	•	1.5	3.7	45	4	2	1
DLC2MALD0200	•	2	5	45	4	2	1
DLC2MALD0250	•	2.5	6.3	45	4	2	1
DLC3MALD0100	•	1	2.5	45	4	3	2
DLC3MALD0150	•	1.5	3.7	45	4	3	2
DLC3MALD0200	•	2	5	45	4	3	2
DLC3MALD0250	•	2.5	6.3	45	4	3	2
DLC3MALD0300	•	3	7.5	50	6	3	2
DLC3MALD0400	•	4	10	50	6	3	2
DLC3MALD0500	•	5	12.5	55	6	3	2
DLC3MALD0600	•	6	15	55	6	3	3
DLC3MALD0800	•	8	20	70	8	3	3
DLC3MALD1000	•	10	25	75	10	3	3
DLC3MALD1200	•	12	30	80	12	3	3
							1/1

C2MAL/DLC2MAL

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

Materiale	DC	Vc	n	f	ар	ae
	1	60	20000	440	1.5	0.2
Lega di alluminio	1.5	90	20000	550	2.3	0.3
A1000 Serie, A2000 – A7000 Serie	2	130	20000	660	3	0.4
	2.5	160	20000	770	3.8	0.5
	1	60	20000	440	1.5	0.2
N Fusioni in lega di alluminio	1.5	90	20000	550	2.3	0.3
rusioni in tega di atturnino	2	130	20000	660	3	0.4
	2.5	160	20000	770	3.8	0.5
	1	50	17000	320	2	0.2
Rame,	1.5	60	13300	400	3	0.3
Leghe di rame, Resine	2	60	9900	320	4	0.4
	2.5	50	6600	440	5	0.5

1/1

CAVA DAL PIENO

Materiale	DC	Vc	n	f	ар
	1	60	20000	330	1
Lega di alluminio	1.5	90	20000	440	1.5
A1000 Serie, A2000 – A7000 Serie	2	130	20000	440	2
	2.5	160	20000	550	2.5
	1	60	20000	330	1
N Fusioni in lega di alluminio	1.5	90	20000	440	1.5
1 d sioni in tega di atturnino	2	130	20000	440	2
	2.5	160	20000	550	2.5
	1	50	17000	420	1
Rame, Leghe di rame,	1.5	60	13300	480	1.5
Resine	2	60	9900	420	2
	2.5	50	6600	480	2.5

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità e velocità di avanzamento.
- 2. Per la fresatura in spallamento si raccomanda la fresatura concorde.
- 3. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
- 4. Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

Materiale	DC	Vc	n	f	ар	ae
			00000	1000	0.5	
	1	60	20000	1320	2.5	0.3
	1.5	90	20000	1650	3.8	0.5
	2	130	20000	1980	5	0.6
	2.5	160	20000	2100	6.3	0.8
	3	190	20000	2200	7.5	0.9
Lega di alluminio	4	250	20000	2420	10	1.2
A1000 Serie	5	300	19000	2420	12.5	1.5
	6	300	16000	2420	15	1.8
	8	300	12000	2420	20	2.4
	9	300	10600	2420	22.5	2.7
	10	300	9500	2420	25	3
	12	300	8000	2640	30	3.6
	1	60	20000	1320	2.5	0.3
	1.5	90	20000	1650	3.8	0.5
	2	130	20000	1980	5	0.6
	2.5	160	20000	2100	6.3	0.8
	3	190	20000	2200	7.5	0.9
Lega di alluminio	4	250	20000	2420	10	1.2
A2000 – A7000 Serie	5	310	20000	2970	12.5	1.5
	6	330	17500	3300	15	1.8
	8	330	13000	3300	20	2.4
	9	330	11700	3450	22.5	2.7
	10	330	10500	3580	25	3
	12	330	9000	3580	30	3.6
	·=					

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità e velocità di avanzamento.
- 2. Per la fresatura in spallamento si raccomanda la fresatura concorde.
- 3. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
- 4. Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

FRESATURA IN SPALLAMENTO

Materiale	DC	Vc	n	f	ар	ae
	1	60	20000	1320	2.5	0.3
	1.5	90	20000	1650	3.8	0.5
	2	130	20000	1980	5	0.6
	2.5	160	20000	2100	6.3	0.8
	3	190	20000	2200	7.5	0.9
Fusioni in logo di alluminio	4	250	20000	2420	10	1.2
Fusioni in lega di alluminio	5	250	16000	2420	12.5	1.5
	6	250	13500	2420	15	1.8
	8	250	10000	2530	20	2.4
	9	250	8900	2640	22.5	2.7
	10	250	8000	2750	25	3
	12	250	6500	2860	30	3.6
	1	60	20000	960	2.5	0.3
	1.5	90	20000	1200	3.8	0.5
	2	120	19100	960	5	0.6
	2.5	120	15300	1200	6.3	0.8
	3	120	12800	960	7.5	0.9
Rame,	4	120	9600	1020	10	1.2
Leghe di rame, Resine	5	120	7700	1080	12.5	1.5
	6	120	6400	1160	15	1.8
	8	120	4800	1300	20	2.4
	9	120	4250	1300	22.5	2.7
	10	120	3840	1420	25	3
	12	120	3200	1550	30	3.6

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità e velocità di avanzamento.

- Per la fresatura in spallamento si raccomanda la fresatura concorde.
 Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
 Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

CAVA DAL PIENO

Materiale	DC	Vc	n	f	ар
	1	60	20000	550	1
	1.5	90	20000	660	1.5
	2	130	20000	770	2
	2.5	160	20000	930	2.5
	3	190	20000	1100	3
Lega di alluminio	4	220	17500	1210	4
A1000 Serie	5	220	14000	1210	5
	6	220	11500	1210	6
	8	220	9000	1320	8
	9	220	7800	1370	9
	10	220	7000	1430	10
	12	220	6000	1540	12
	1	60	20000	550	1
	1.5	90	20000	660	1.5
	2	130	20000	770	2
	2.5	160	20000	930	2.5
	3	190	20000	1100	3
Lega di alluminio	4	240	19000	1210	4
A2000 – A7000 Serie	5	240	15500	1320	5
	6	240	12500	1430	6
	8	240	9500	1540	8
	9	240	8500	1600	9
	10	240	7500	1650	10
	12	240	6500	1760	12

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità e velocità di avanzamento.
- 2. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
- 3. Il rivestimento DLC è la prima scelta per materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

CAVA DAL PIENO

Materiale	DC	Vc	n	f	ар
	1	60	20000	550	1
	1.5	90	20000	660	1.5
	2	130	20000	770	2
	2.5	160	20000	860	2.5
	3	160	17000	940	3
Fusioni in logo di alluminio	4	160	13000	940	4
Fusioni in lega di alluminio	5	160	10000	940	5
	6	160	8500	940	6
	8	160	6500	940	8
	9	160	5700	940	9
	10	160	5000	990	10
	12	160	4000	1100	12
	1	60	20000	700	1
	1.5	90	20000	720	1.5
	2	120	19100	730	2
	2.5	120	15300	750	2.5
	3	120	12800	770	3
Rame,	4	120	9600	820	4
Leghe di rame, Resine	5	120	7700	870	5
	6	120	6400	930	6
	8	120	4800	1040	8
	9	120	4200	1100	9
	10	120	3800	1140	10
	12	120	3200	1250	12

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità e velocità di avanzamento.

 2. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

 3. Il rivestimento DLC è la prima scelta per materiali come le resine. Se la qualità della superficie o la durata dell'utensile
- risultano ridotte, utilizzare un prodotto non rivestito.

FRESATURA A TUFFO

Materiale	DC	Vc	n	f
	1	60	20000	110
	1.5	90	20000	140
	2	130	20000	170
	2.5	160	20000	170
	3	190	20000	170
Lega di alluminio	4	220	17500	170
A1000 Serie	5	220	14000	170
	6	220	11500	170
	8	220	9000	110
	9	220	7800	110
	10	220	7000	80
	12	220	6000	80
	1	60	20000	110
	1.5	90	20000	140
	2	130	20000	170
	2.5	160	20000	170
	3	190	20000	170
Lega di alluminio	4	240	19000	220
A2000 – A7000 Serie	5	240	15500	220
	6	240	12500	220
	8	240	9500	220
	9	240	8500	220
	10	240	7500	170
	12	240	6500	170

1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori,

regolare proporzionalmente velocità e velocità di avanzamento.

2. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

3. Il rivestimento DLC è la prima scelta per materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

FRESATURA A TUFFO

Materiale	DC	Vc	n	f
	1	60	20000	90
	1.5	90	20000	120
	2	130	20000	140
	2.5	160	20000	140
	3	160	17000	140
Fusioni in lane di alluminia	4	160	13000	110
Fusioni in lega di alluminio	5	160	10000	90
	6	160	8500	90
	8	160	6500	70
	9	160	5700	70
	10	160	5000	60
	12	160	4000	60
	1	50	15900	80
	1.5	50	10600	80
	2	50	8000	80
	2.5	50	6400	90
	3	50	5300	100
Rame,	4	50	4000	100
Leghe di rame, Resine	5	50	3200	100
	6	50	2700	110
	8	50	2000	120
	9	50	1800	120
	10	50	1600	120
	12	50	1300	120

^{1.} Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità e velocità di avanzamento.

2. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

^{3.} Il rivestimento DLC è la prima scelta per materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

C3MAL - TIPOLOGIA CON STELO MINORATO

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

Materiale	DC	Vc	n	f	ар	ae
	7	250	11400	1550	7	0.7
	8	250	10000	1980	8	0.8
Lega di alluminio	9	250	8800	1980	9	0.9
A1000 Serie	10	250	8000	2090	10	1
	11	250	7200	2090	11	1.1
	12	250	6600	1870	12	1.2
	7	300	13600	2090	7	0.7
	8	300	12000	2750	8	0.8
Lega di alluminio	9	300	10600	2750	9	0.9
A2000 – A7000 Serie	10	300	9500	2750	10	1
	11	300	8700	2750	11	1.1
	12	300	7900	3080	12	1.2
	7	200	9100	1210	7	0.7
	8	200	8000	1650	8	0.8
Fraissiis Isaa di surasisis	9	200	7100	1650	9	0.9
Fusioni in lega di alluminio	10	200	6300	1870	10	1
	11	200	5800	1870	11	1.1
	12	200	5300	1760	12	1.2
	7	150	6800	1000	7	0.7
	8	150	6000	1070	8	0.8
Rame,	9	150	5300	1070	9	0.9
Leghe di rame, Resine	10	150	4800	1000	10	1
	11	150	4300	870	11	1.1
	12	150	4000	960	12	1.2

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità e velocità di avanzamento.
- Le condizioni raccomandate sono calcolate sulla base di una sporgenza utensile di 4 x DC. Se è necessario uno sbalzo maggiore, si prega di regolare le condizioni di taglio facendo riferimento ai valori a pagina 20.
- 3. Per la fresatura in spallamento si raccomanda la fresatura concorde.
- 4. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

C3MAL - TIPOLOGIA CON STELO MINORATO

CAVA DAL PIENO

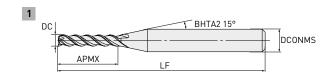
Materiale	DC	Vc	n	f	ар
	7	250	11400	1100	0.7
	8	250	10000	1490	1.6
Lega di alluminio	9	250	8800	1490	1.8
A1000 Serie	10	250	8000	1600	3
	11	250	7200	1600	3.3
	12	250	6600	1540	3.6
	7	300	13600	1540	0.7
	8	300	12000	2200	1.6
Lega di alluminio	9	300	10600	2200	1.8
A2000 – A7000 Serie	10	300	9500	2040	3
	11	300	8700	2040	3.3
	12	300	7900	1930	3.6
	7	200	9100	990	0.7
	8	200	8000	1320	1.6
	9	200	7100	1320	1.8
Fusioni in lega di alluminio	10	200	6300	1320	3
	11	200	5800	1320	3.3
	12	200	5300	1320	3.6
	7	80	3600	430	0.7
	8	80	3200	480	1.6
Rame,	9	80	2800	430	1.8
Leghe di rame, Resine	10	100	3200	760	3
	11	100	2900	700	3.3
	12	100	2700	640	3.6

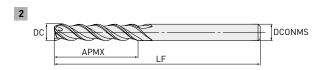
- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori,
- regolare proporzionalmente velocità di taglio e velocità di avanzamento.

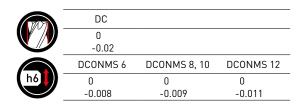
 2. Le condizioni raccomandate sono calcolate sulla base di una sporgenza utensile di 4 x DC. Se è necessario uno sbalzo maggiore, si prega di regolare le condizioni di taglio facendo riferimento ai valori della tabella seguente.
- 3. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

Sbalzo utensile Giri		f		ар	
Sparzo utensite	Oll I	Fresatura in spallamento	Cava dal pieno	Fresatura in spallamento	Cava dal pieno
5D	70 %	70 %	70 %	ap 1D x ae 0.05D	60 %
6D	50 %	50 %	50 %	ap 1D x ae 0.03D	40 %
7D	30 %	30 %	30 %	ap 1D x ae 0.015D	20 %

C3SXAL





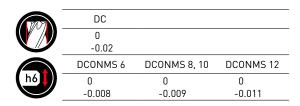

FRESA, LUNGHEZZA TAGLIENTE LUNGA, 3 TAGLIENTI, PER LEGHE DI ALLUMINIO

N

- Il tagliente diminuisce rumore e vibrazioni, garantendo finiture superficiali di qualità superiore.
- Lunghezza tagliente DC x 5.

	bilità						
Codice ordinazione	Disponibilità	DC	APMX	LF	DCONMS	ZEFP	Tipo
C3SXALD0300	•	3	15	55	6	3	1
C3SXALD0400	•	4	20	60	6	3	1
C3SXALD0500	•	5	25	65	6	3	1
C3SXALD0600	•	6	30	75	6	3	2
C3SXALD0800	•	8	40	90	8	3	2
C3SXALD1000	•	10	50	100	10	3	2
C3SXALD1200	•	12	60	110	12	3	2
							1/1

DLC3SXAL


FRESA, LUNGHEZZA TAGLIENTE LUNGA, 3 TAGLIENTI, PER LEGHE DI ALLUMINIO

Ν

- Con geometria di rastremazione lunga DC x 3 e DC x 5.
- Il rivestimento DLC fornisce un'estrema resistenza all'incollamento.

	Lità						
Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
DLC3SXALD0300	•	3	15	55	6	3	1
DLC3SXALD0400	•	4	20	60	6	3	1
DLC3SXALD0500	•	5	25	65	6	3	1
DLC3SXALD0600	•	6	30	75	6	3	2
DLC3SXALD0800	•	8	40	90	8	3	2
DLC3SXALD1000	•	10	50	100	10	3	2
DLC3SXALD1200	•	12	60	110	12	3	2
							1/1

C3SXAL/DLC3SXAL

CONDIZIONI DI TAGLIO RACCOMANDATE

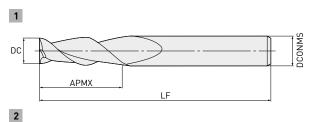
FRESATURA IN SPALLAMENTO

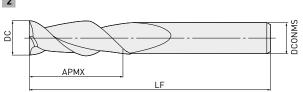
Materiale	DC	Vc	n	f	ар	ae
	3	160	17000	680	15	0.3
	4	160	12700	750	20	0.4
	5	160	10000	980	25	0.5
Lega di alluminio A1000 Serie	6	160	8500	980	30	0.6
A 1000 Serie	8	160	6400	980	40	0.8
	10	160	5100	1050	50	1
	12	160	4300	1300	60	1.2
	3	190	20000	680	15	0.3
	4	230	18000	1050	20	0.4
	5	230	14600	1050	25	0.5
Lega di alluminio A2000 – A7000 Serie	6	230	12000	1200	30	0.6
AZOOO AYOOO SCHE	8	230	9100	1350	40	0.8
	10	230	7300	1500	50	1
	12	230	6100	1650	60	1.2
	3	120	12700	600	15	0.3
	4	120	9600	600	20	0.4
	5	120	7600	600	25	0.5
Fusioni in lega di alluminio	6	120	6400	600	30	0.6
	8	120	4800	750	40	0.8
	10	120	3800	830	50	1
	12	120	3200	900	60	1.2
	3	50	5300	100	15	0.3
	4	50	4000	100	20	0.4
Rame,	5	50	3200	100	25	0.5
Leghe di rame,	6	50	2600	110	30	0.6
Resine	8	50	2000	120	40	0.8
	10	50	1600	120	50	1
	12	50	1300	120	60	1.2

1

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità e velocità di avanzamento.
- 2. Per la fresatura in spallamento si raccomanda la fresatura concorde.
- 3. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
- 4. Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

AM2MR

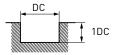




SERIE MEDIA, 2 TAGLIENTI, LAVORAZIONI GENERICHE

DC=3	3 <dc≤6< th=""><th>6<dc≤10< th=""><th>10<dc≤16< th=""><th>16<dc< th=""></dc<></th></dc≤16<></th></dc≤10<></th></dc≤6<>	6 <dc≤10< th=""><th>10<dc≤16< th=""><th>16<dc< th=""></dc<></th></dc≤16<></th></dc≤10<>	10 <dc≤16< th=""><th>16<dc< th=""></dc<></th></dc≤16<>	16 <dc< th=""></dc<>
0	0	0	0	0
-0.006	-0.008	-0.009	-0.011	-0.013

- Scelta ottimale per lavorazione di sgrossatura e finitura dell'alluminio ad alta velocità.
- Per velocità di rimozione del metallo ultra-elevate.

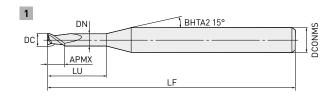

Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
•	3	9	60	3	2	2
•	3	9	60	6	2	1
•	4	12	60	4	2	2
•	4	12	60	6	2	1
•	5	15	60	5	2	2
•	5	15	60	6	2	1
•	6	18	60	6	2	2
•	8	20	75	8	2	2
•	10	25	75	10	2	2
•	12	25	75	12	2	2
•	14	32	75	16	2	1
•	16	32	100	16	2	2
•	20	38	100	20	2	2
•	25	38	125	25	2	2
	Disponibilità	3 4 4 4 5 5 5 6 8 10 12 14 16 20	 3 3 4 4 4 5 15 6 18 8 20 10 25 12 25 14 32 16 32 20 38 	● 3 9 60 ● 3 9 60 ● 4 12 60 ● 4 12 60 ● 5 15 60 ● 5 15 60 ● 6 18 60 ● 8 20 75 ● 10 25 75 ● 12 25 75 ● 14 32 75 ● 16 32 100 ● 20 38 100	● 3 9 60 3 ● 3 9 60 6 ● 4 12 60 4 ● 4 12 60 6 ● 5 15 60 5 ● 5 15 60 6 ● 6 18 60 6 ● 8 20 75 8 ● 10 25 75 10 ● 12 25 75 12 ● 14 32 75 16 ● 16 32 100 16 ● 20 38 100 20	● 3 9 60 3 2 ● 3 9 60 6 2 ● 4 12 60 4 2 ● 4 12 60 6 2 ● 5 15 60 5 2 ● 5 15 60 6 2 ● 6 18 60 6 2 ● 8 20 75 8 2 ● 10 25 75 10 2 ● 12 25 75 12 2 ● 14 32 75 16 2 ● 16 32 100 16 2 ● 20 38 100 20 2

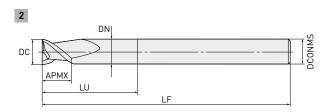
AM2MR

CONDIZIONI DI TAGLIO RACCOMANDATE

Materiale	DC	n	Vf
	3	20000	1200 – 1600
	6	20000	2800 – 4000
	8	17000	3000 – 4000
N Lega di alluminio	10	15000	3600 – 4500
Lega di atturimio	12	12000	3600 - 4500
	16	10000	3600 – 4500
	20	8000	3200 – 4300
	25	6000	3000 – 3600

AM2SC





SERIE CORTA, 2 TAGLIENTI, RASTREMATA, PER CAVE, TAGLIENTE AL CENTRO

DC=3	3 <dc≤6< th=""><th>6<dc≤16< th=""><th>16<dc< th=""></dc<></th></dc≤16<></th></dc≤6<>	6 <dc≤16< th=""><th>16<dc< th=""></dc<></th></dc≤16<>	16 <dc< th=""></dc<>
-0.005	-0.015	-0.02	-0.02
-0.028	-0.038	-0.047	-0.053

• Scelta ottimale per lavorazione dell'alluminio ad alta velocità.

Codice ordinazione	Disponibilità	DC	АРМХ	LU	DN	LF	DCONMS	ZEFP	Tipo
AM2SCD0300A060	•	3	6	12	2.7	60	6	2	1
AM2SCD0400A060	•	4	6	12	3.7	60	6	2	1
AM2SCD0500A060	•	5	8	15	4.7	60	6	2	1
AM2SCD0600A075	•	6	8	16	5.7	75	6	2	2
AM2SCD0800A075	•	8	10	20	7.4	75	8	2	2
AM2SCD1000A075	•	10	12	30	9.4	75	10	2	2
AM2SCD1000A100	•	10	12	35	9.4	100	10	2	2
AM2SCD1200A075	•	12	15	30	11.4	75	12	2	2
AM2SCD1200A100	•	12	15	35	11.4	100	12	2	2
AM2SCD1200A125	•	12	15	40	11.4	125	12	2	2
AM2SCD1600A075	•	16	15	30	15.4	75	16	2	2
AM2SCD1600A100	•	16	15	40	15.4	100	16	2	2
AM2SCD1600A125	•	16	15	45	15.4	125	16	2	2
AM2SCD2000A100	•	20	20	40	18.0	100	20	2	2
AM2SCD2000A125	•	20	20	50	18.0	125	20	2	2

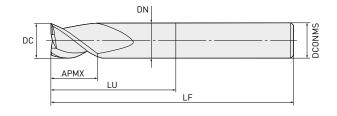
AM2SC

CONDIZIONI DI TAGLIO RACCOMANDATE

Materiale	DC	n	Vf
	3	20000	800 – 1600
	6	20000	1800 – 2800
	8	17000	2200 – 3400
N Lega di alluminio	10	15000	2300 – 3600
	12	12000	2300 – 3600
	16	10000	2300 – 3600
	20	8000	2200 – 3300
	0.25 – 0.5DC <u> </u>	1DC DC	0.25 – 0.5DC

27

AM3SS



SERIE CORTA, 3 TAGLIENTI, RASTREMATA, LAVORAZIONI DI SGROSSATURA

16 <dc< th=""></dc<>
-0.02
-0.053

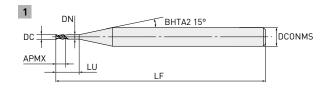
• Scelta ottimale per lavorazione dell'alluminio ad alta velocità.

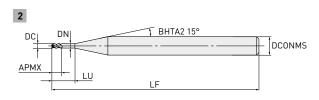
	ibilità							
Codice ordinazione	Disponibilità	DC	АРМХ	LU	DN	LF	DCONMS	ZEFP
AM3SSD1000A075	•	10	12	30	9.4	75	10	
AM3SSD1000A100	•	10	12	35	9.4	100	10	
AM3SSD1200A075	•	12	15	30	11.4	75	12	
AM3SSD1200A100	•	12	15	35	11.4	100	12	
AM3SSD1200A125	•	12	15	40	11.4	125	12	
AM3SSD1600A075	•	16	15	30	15.4	75	16	
AM3SSD1600A100	•	16	15	40	15.4	100	16	3
AM3SSD1600A125	•	16	15	45	15.4	125	16	3
AM3SSD2000A100	•	20	20	40	18.0	100	20	
AM3SSD2000A125	•	20	20	60	18.0	125	20	
AM3SSD2000A150	•	20	20	85	18.0	150	20	
AM3SSD2500A100	•	25	20	50	23.0	100	25	
AM3SSD2500A125	•	25	20	65	23.0	125	25	
AM3SSD2500A150	•	25	20	90	23.0	150	25	

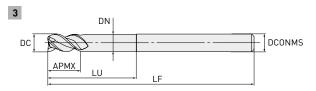
AM3SS

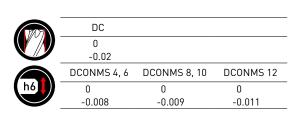
CONDIZIONI DI TAGLIO RACCOMANDATE

Materiale	DC	n	Vf
	12	12000	1600 – 2500
Lega di alluminio	16	10000	1300 – 2100
Lega di atturrino	20	8000	1100 – 1600
	25	6000	800 – 1200
	0.25 - 0.5DC_	1DC	0.25 - 0.5DC








FRESA, RASTREMAZIONE LUNGA, 2 E 3 TAGLIENTI, PER LEGHE DI ALLUMINIO

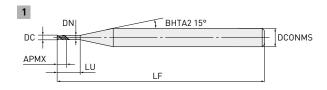
- Il tagliente diminuisce rumore e vibrazioni, garantendo finiture superficiali di qualità superiore.
- Con geometria di rastremazione lunga DC x 3 e DC x 5.

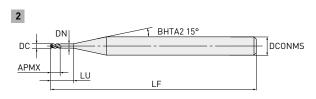
Codice ordinazione	Disponibilità	DC	АРМХ	LU	DN	LF	DCONMS	ZEFP	Tipo
C2XLALD0100N030	•	1	1.5	3	0.95	45	4	2	1
C2XLALD0100N050	•	1	1.5	5	0.95	45	4	2	1
C2XLALD0150N045	•	1.5	2.3	4.5	1.45	45	4	2	1
C2XLALD0150N080	•	1.5	2.3	8	1.45	45	4	2	1
C2XLALD0200N060	•	2	3	6	1.94	45	4	2	1
C2XLALD0200N100	•	2	3	10	1.94	45	4	2	1
C2XLALD0250N075	•	2.5	3.8	7.5	2.4	45	4	2	1
C2XLALD0250N125	•	2.5	3.8	12.5	2.4	45	4	2	1
C3XLALD0100N030	•	1	1.5	3	0.95	45	4	3	2
C3XLALD0100N050	•	1	1.5	5	0.95	45	4	3	2
C3XLALD0150N045	•	1.5	2.3	4.5	1.45	45	4	3	2
C3XLALD0150N080	•	1.5	2.3	8	1.45	45	4	3	2
C3XLALD0200N060	•	2	3	6	1.94	45	4	3	2
C3XLALD0200N100	•	2	3	10	1.94	45	4	3	2
C3XLALD0250N075	•	2.5	3.8	7.5	2.4	45	4	3	2
C3XLALD0250N125	•	2.5	3.8	12.5	2.4	45	4	3	2
C3XLALD0300N090	•	3	4.5	9	2.85	55	6	3	2

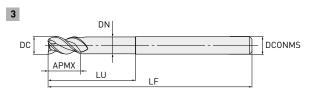
C2XLAL / C3XLAL - FRESA, RASTREMAZIONE LUNGA, 2 E 3 TAGLIENTI, PER LEGHE DI ALLUMINIO

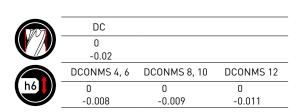
Codice ordinazione	Disponibilità	DC	АРМХ	LU	DN	LF	DCONMS	ZEFP	Tipo
C3XLALD0300N150	•	3	4.5	15	2.85	55	6	3	2
C3XLALD0400N120	•	4	6	12	3.8	60	6	3	2
C3XLALD0400N200	•	4	6	20	3.8	60	6	3	2
C3XLALD0500N150	•	5	7.5	15	4.8	65	6	3	2
C3XLALD0500N250	•	5	7.5	25	4.8	65	6	3	2
C3XLALD0600N180	•	6	9	18	5.8	70	6	3	3
C3XLALD0600N300	•	6	9	30	5.8	70	6	3	3
C3XLALD0700N210	•	7	10.5	21	6.8	75	8	3	2
C3XLALD0700N350	•	7	10.5	35	6.8	75	8	3	2
C3XLALD0800N240	•	8	12	24	7.8	80	8	3	3
C3XLALD0800N400	•	8	12	40	7.8	80	8	3	3
C3XLALD0900N270	•	9	13.5	27	8.8	85	10	3	2
C3XLALD0900N450	•	9	13.5	45	8.8	85	10	3	2
C3XLALD1000N300	•	10	15	30	9.8	90	10	3	3
C3XLALD1000N500	•	10	15	50	9.8	90	10	3	3
C3XLALD1100N330	•	11	16.5	33	10.8	95	12	3	2
C3XLALD1100N550	•	11	16.5	55	10.8	95	12	3	2
C3XLALD1200N360	•	12	18	36	11.8	100	12	3	3
C3XLALD1200N600	•	12	18	60	11.8	100	12	3	3

DLC2XLAL/ **DLC3XLAL**






FRESA, RASTREMAZIONE LUNGA, 2 E 3 TAGLIENTI, PER LEGHE DI ALLUMINIO



- Con geometria di rastremazione lunga DC x 3 e DC x 5.
- Il rivestimento DLC fornisce un'estrema resistenza all'incollamento.

Disponibilità	DC	АРМХ	LU	DN	LF	DCONMS	ZEFP	Tipo
•	1	1.5	3	0.95	45	4	2	1
•	1	1.5	5	0.95	45	4	2	1
•	1.5	2.3	4.5	1.45	45	4	2	1
•	1.5	2.3	8	1.45	45	4	2	1
•	2	3	6	1.94	45	4	2	1
•	2	3	10	1.94	45	4	2	1
•	2.5	3.8	7.5	2.4	45	4	2	1
•	2.5	3.8	12.5	2.4	45	4	2	1
•	1	1.5	3	0.95	45	4	3	2
•	1	1.5	5	0.95	45	4	3	2
•	1.5	2.3	4.5	1.45	45	4	3	2
•	1.5	2.3	8	1.45	45	4	3	2
•	2	3	6	1.94	45	4	3	2
•	2	3	10	1.94	45	4	3	2
	•	1 1 1 1.5 1.5 2 2 2 2.5 1 1 1.5 1.5 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	 1 1.5 1 1.5 1 1.5 1.5 2.3 1.5 2.3 2 3 2 3 2 3 2 3.8 2.5 3.8 1 1.5 1 1.5 1 1.5 1 1.5 1 1.5 2.3 1.5 2.3 2 3 	 1 1.5 3 1 1.5 5 1.5 5 1.5 2.3 4.5 1.5 2.3 8 2 3 6 2 3 10 2.5 3.8 7.5 2.5 3.8 7.5 1 1.5 3 1 1.5 3 1 1.5 5 1 1.5 5 1 1.5 2.3 4.5 1.5 2.3 4.5 1.5 2.3 8 2 3 6 	● 1 1.5 3 0.95 ● 1 1.5 5 0.95 ● 1.5 2.3 4.5 1.45 ● 1.5 2.3 8 1.45 ● 2 3 6 1.94 ● 2 3 10 1.94 ● 2.5 3.8 7.5 2.4 ● 2.5 3.8 12.5 2.4 ● 1.5 3 0.95 ● 1 1.5 5 0.95 ● 1.5 2.3 4.5 1.45 ● 2 3 6 1.94	● 1 1.5 3 0.95 45 ● 1 1.5 5 0.95 45 ● 1.5 2.3 4.5 1.45 45 ● 1.5 2.3 8 1.45 45 ● 2 3 6 1.94 45 ● 2.5 3.8 7.5 2.4 45 ● 2.5 3.8 12.5 2.4 45 ● 2.5 3.8 12.5 2.4 45 ● 1 1.5 3 0.95 45 ● 1 1.5 5 0.95 45 ● 1.5 2.3 4.5 1.45 45 ● 1.5 2.3 8 1.45 45 ● 2 3 6 1.94 45	● 1 1.5 3 0.95 45 4 ● 1 1.5 5 0.95 45 4 ● 1.5 2.3 4.5 1.45 45 4 ● 1.5 2.3 8 1.45 45 4 ● 2 3 6 1.94 45 4 ● 2 3 10 1.94 45 4 ● 2.5 3.8 7.5 2.4 45 4 ● 2.5 3.8 12.5 2.4 45 4 ● 2.5 3.8 12.5 2.4 45 4 ● 1.5 3 0.95 45 4 ● 1.5 5 0.95 45 4 ● 1.5 2.3 4.5 1.45 45 4 ● 1.5 2.3 8 1.45 45 4 ● 2 3 6 1.94 45 4	● 1 1.5 3 0.95 45 4 2 ● 1 1.5 5 0.95 45 4 2 ● 1.5 2.3 4.5 1.45 45 4 2 ● 1.5 2.3 8 1.45 45 4 2 ● 2 3 6 1.94 45 4 2 ● 2 3 10 1.94 45 4 2 ● 2.5 3.8 7.5 2.4 45 4 2 ● 2.5 3.8 12.5 2.4 45 4 2 ● 2.5 3.8 12.5 2.4 45 4 2 ● 1.5 3 0.95 45 4 3 ● 1.5 5 0.95 45 4 3 ● 1.5 2.3 4.5 1.45 45 4 3 ● 1.5 2.3 8 1.45 45

DLC2XLAL / DLC3XLAL - FRESA, RASTREMAZIONE LUNGA, 2 E 3 TAGLIENTI, PER LEGHE DI ALLUMINIO

	oilità								
Codice ordinazione	Disponibilità	DC	APMX	LU	DN	LF	DCONMS	ZEFP	Tipo
DLC3XLALD0250N075	•	2.5	3.8	7.5	2.4	45	4	3	2
DLC3XLALD0250N125	•	2.5	3.8	12.5	2.4	45	4	3	2
DLC3XLALD0300N090	•	3	4.5	9	2.85	55	6	3	2
DLC3XLALD0300N150	•	3	4.5	15	2.85	55	6	3	2
DLC3XLALD0400N120	•	4	6	12	3.8	60	6	3	2
DLC3XLALD0400N200	•	4	6	20	3.8	60	6	3	2
DLC3XLALD0500N150	•	5	7.5	15	4.8	65	6	3	2
DLC3XLALD0500N250	•	5	7.5	25	4.8	65	6	3	2
DLC3XLALD0600N180	•	6	9	18	5.8	70	6	3	3
DLC3XLALD0600N300	•	6	9	30	5.8	70	6	3	3
DLC3XLALD0800N240	•	8	12	24	7.8	80	8	3	3
DLC3XLALD0800N400	•	8	12	40	7.8	80	8	3	3
DLC3XLALD0900N270	•	9	13.5	27	8.8	85	10	3	2
DLC3XLALD0900N450	•	9	13.5	45	8.8	85	10	3	2
DLC3XLALD1000N300	•	10	15	30	9.8	90	10	3	3
DLC3XLALD1000N500	•	10	15	50	9.8	90	10	3	3
DLC3XLALD1100N330	•	11	16.5	33	10.8	95	12	3	2
DLC3XLALD1100N550	•	11	16.5	55	10.8	95	12	3	2
DLC3XLALD1200N360	•	12	18	36	11.8	100	12	3	3
DLC3XLALD1200N600	•	12	18	60	11.8	100	12	3	3

C2XLAL/DLC2XLAL

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

Materiale	DC	LU	Vc	n	f	ар	ae
Lega di alluminio A1000 Serie, A2000 – A7000 Serie	1	3	60	20000	800	1	0.3
	1	5	50	16000	660	1	0.3
	1.5	4.5	90	20000	800	1.5	0.45
	1.5	8	80	16000	660	1.5	0.45
	2	6	130	20000	1100	2	0.6
	2	10	100	16000	880	2	0.6
	2.5	7.5	160	20000	1100	2.5	0.75
	2.5	12.5	130	16000	880	2.5	0.75
Fusioni in lega di alluminio	1	3	60	20000	800	1	0.3
	1	5	50	16000	660	1	0.3
	1.5	4.5	90	20000	800	1.5	0.45
	1.5	8	80	16000	660	1.5	0.45
	2	6	130	20000	1100	2	0.6
	2	10	100	16000	880	2	0.6
	2.5	7.5	160	20000	1100	2.5	0.75
	2.5	12.5	130	16000	880	2.5	0.75
Rame, Leghe di rame, Resine	1	3	60	20000	800	1	0.3
	1	5	50	16000	660	1	0.3
	1.5	4.5	90	20000	800	1.5	0.45
	1.5	8	80	16000	660	1.5	0.45
	2	6	130	20000	1100	2	0.6
	2	10	100	16000	880	2	0.6
	2.5	7.5	160	20000	1100	2.5	0.75
	2.5	12.5	130	16000	880	2.5	0.75

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità di taglio e velocità di avanzamento.
- 2. Per la fresatura in spallamento si raccomanda la fresatura concorde.
- 3. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
- 4. Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

C2XLAL / DLC2XLAL

CAVA DAL PIENO

Materiale	DC	LU	Vc	n	f	ар
Lega di alluminio A1000 Serie, A2000 – A7000 Serie	1	3	60	20000	440	1
	1	5	50	16000	360	1
	1.5	4.5	90	20000	440	1.5
	1.5	8	80	16000	360	1.5
	2	6	130	20000	660	2
	2	10	100	16000	580	2
	2.5	7.5	160	20000	660	2.5
	2.5	12.5	130	16000	580	2.5
Fusioni in lega di alluminio	1	3	60	20000	440	1
	1	5	50	16000	360	1
	1.5	4.5	90	20000	440	1.5
	1.5	8	80	16000	360	1.5
	2	6	130	20000	660	2
	2	10	100	16000	580	2
	2.5	7.5	160	20000	660	2.5
	2.5	12.5	130	16000	580	2.5
Rame, Leghe di rame, Resine	1	3	60	20000	440	1
	1	5	50	16000	360	1
	1.5	4.5	90	20000	440	1.5
	1.5	8	80	16000	360	1.5
	2	6	130	20000	660	2
	2	10	100	16000	580	2
	2.5	7.5	160	20000	660	2.5
	2.5	12.5	130	16000	580	2.5

- Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità di taglio e velocità di avanzamento.
 Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
- 3. Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

C2XLAL / DLC2XLAL

FRESATURA A TUFFO

Materiale	DC	LU	Vc	n	f
Lega di alluminio A1000 Serie, A2000 – A7000 Serie	1	3	60	20000	140
	1	5	50	16000	120
	1.5	4.5	90	20000	140
	1.5	8	80	16000	120
	2	6	130	20000	220
	2	10	100	16000	180
	2.5	7.5	160	20000	220
	2.5	12.5	130	16000	180
N Fusioni in lega di alluminio	1	3	60	20000	110
	1	5	50	16000	90
	1.5	4.5	90	20000	110
	1.5	8	80	16000	90
	2	6	130	20000	190
	2	10	100	16000	140
	2.5	7.5	160	20000	190
	2.5	12.5	130	16000	140
Rame, Leghe di rame, Resine	1	3	60	20000	110
	1	5	50	16000	90
	1.5	4.5	90	20000	110
	1.5	8	80	16000	90
	2	6	130	20000	190
	2	10	100	16000	140
	2.5	7.5	160	20000	190
	2.5	12.5	130	16000	140

1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità di taglio e velocità di avanzamento.

Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
 Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO

Materiale	DC	LU	Vc	n	f	ар	ae
	1	3	60	20000	1210	1	0.3
	1	5	50	16000	990	1	0.3
	1.5	4.5	90	20000	1210	1.5	0.45
	1.5	8	80	16000	990	1.5	0.45
	2	6	130	20000	1650	2	0.6
	2	10	100	16000	1320	2	0.6
	2.5	7.5	160	20000	1650	2.5	0.75
	2.5	12.5	130	16000	1320	2.5	0.75
	3	9	190	20000	2200	3	0.9
	3	15	150	16000	1760	3	0.9
	4	12	250	20000	2420	4	1.2
	4	20	200	16000	1980	4	1.2
	5	15	310	19700	2750	5	1.5
Lega di alluminio	5	25	250	15700	2200	5	1.5
A1000 Serie	6	18	310	16500	2750	6	1.8
	6	30	250	13200	2200	6	1.8
	7	21	310	14100	2750	7	2.1
	7	35	250	11400	2200	7	2.1
	8	24	310	12300	2750	8	2.4
	8	40	250	9800	2200	8	2.4
	9	27	310	11000	2750	9	2.7
	9	45	250	8800	2000	9	2.7
	10	30	310	9900	2750	10	3
	10	50	250	7900	2200	10	3
	11	33	310	9000	2860	11	3.3
	11	55	250	7200	2100	11	3.3
	12	36	310	8200	2970	12	3.6
	12	60	250	6500	2200	12	3.6

1/:

Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità di taglio e velocità di avanzamento.

^{2.} Per la fresatura in spallamento si raccomanda la fresatura concorde.

^{3.} Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

^{4.} Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

FRESATURA IN SPALLAMENTO

	Materiale	DC	LU	Vc	n	f	ар	ae
		1	3	60	20000	1210	1	0.3
	-	1	5	50	16000	990	1	0.3
		1.5	4.5	90	20000	1210	1.5	0.45
	•	1.5	8	80	16000	990	1.5	0.45
		2	6	130	20000	1650	2	0.6
	-	2	10	100	16000	1320	2	0.6
		2.5	7.5	160	20000	1650	2.5	0.75
	-	2.5	12.5	130	16000	1320	2.5	0.75
		3	9	190	20000	2420	3	0.9
	-	3	15	150	16000	1980	3	0.9
		4	12	250	20000	2750	4	1.2
	_	4	20	200	16000	2200	4	1.2
		5	15	310	20000	3410	5	1.5
N	Lega di alluminio	5	25	250	16000	2750	5	1.5
IN	A2000 – A7000 Serie	6	18	350	18600	3850	6	1.8
	-	6	30	280	14800	3080	6	1.8
		7	21	350	15900	3850	7	2.1
		7	35	280	12700	3080	7	2.1
		8	24	350	13900	3850	8	2.4
		8	40	280	11100	3080	8	2.4
		9	27	350	12400	3850	9	2.7
		9	45	280	9900	3080	9	2.7
		10	30	350	11100	4180	10	3
		10	50	280	8800	3300	10	3
		11	33	350	10100	4510	11	3.3
		11	55	280	8100	3520	11	3.3
		12	36	350	9300	4510	12	3.6
		12	60	280	7400	3520	12	3.6

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità di taglio e velocità di avanzamento.

 2. Per la fresatura in spallamento si raccomanda la fresatura concorde.
- 3. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
- 4. Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

FRESATURA IN SPALLAMENTO

N	1 ateriale	DC	LU	Vc	n	f	ар	ae
		1	3	60	20000	1210	1	0.3
	_	1	5	50	16000	990	1	0.3
	Ī	1.5	4.5	90	20000	1210	1.5	0.45
	_	1.5	8	80	16000	990	1.5	0.45
	Ī	2	6	130	20000	1650	2	0.6
	_	2	10	100	16000	1320	2	0.6
	Ī	2.5	7.5	160	20000	1650	2.5	0.75
	_	2.5	12.5	130	16000	1320	2.5	0.75
		3	9	190	20000	2420	3	0.9
	_	3	15	150	16000	1980	3	0.9
		4	12	230	18300	2530	4	1.2
	_	4	20	180	14600	2090	4	1.2
	usioni in lega di alluminio, –	5	15	230	14600	2310	5	1.5
	Rame,	5	25	180	11700	1870	5	1.5
	eghe di rame,	6	18	230	12200	2310	6	1.8
F	Resine -	6	30	180	9700	1870	6	1.8
		7	21	230	10500	2310	7	2.1
	-	7	35	180	8200	1870	7	2.1
		8	24	230	9200	2420	8	2.4
	-	8	40	180	7300	1980	8	2.4
		9	27	230	8100	2420	9	2.7
	-	9	45	180	6400	1980	9	2.7
		10	30	230	7300	2420	10	3
	_	10	50	180	5800	1980	10	3
		11	33	230	6700	2420	11	3.3
	_	11	55	180	5200	1980	11	3.3
		12	36	230	6100	2420	12	3.6
	_	12	60	180	4800	1980	12	3.6

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità di taglio e velocità di avanzamento.

 2. Per la fresatura in spallamento si raccomanda la fresatura concorde.
- 3. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
- 4. Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

CAVA DAL PIENO

	Materiale	DC	LU	Vc	n	f	ар
		1	3	60	20000	660	1
		1	5	50	16000	550	1
		1.5	4.5	90	20000	660	1.5
	·	1.5	8	80	16000	550	1.5
		2	6	130	20000	990	2
	· ·	2	10	100	16000	880	2
		2.5	7.5	160	20000	990	2.5
		2.5	12.5	130	16000	880	2.5
		3	9	190	20000	1320	3
		3	15	150	16000	1100	3
		4	12	250	20000	1540	4
		4	20	200	16000	1320	4
		5	15	310	19700	1650	5
	Lega di alluminio	5	25	250	15700	1320	5
N	A1000 Serie	6	18	310	16500	1760	6
		6	30	250	13200	1430	6
		7	21	310	14100	1760	7
		7	35	250	11400	1430	7
		8	24	310	12300	1870	8
		8	40	250	9800	1540	8
		9	27	310	11000	1870	9
		9	45	250	8800	1540	9
		10	30	310	9900	1870	10
		10	50	250	7900	1540	10
		11	33	310	9000	1980	11
		11	55	250	7200	1540	11
		12	36	310	8200	2090	12
		12	60	250	6500	1650	12

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità di taglio e velocità di avanzamento.
- Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
 Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

CAVA DAL PIENO

	Materiale	DC	LU	Vc	n	f	ар
		1	3	60	20000	660	1
	-	1	5	50	16000	550	1
		1.5	4.5	90	20000	660	1.5
	_	1.5	8	80	16000	550	1.5
		2	6	130	20000	990	2
	_	2	10	100	16000	880	2
		2.5	7.5	160	20000	990	2.5
	_	2.5	12.5	130	16000	880	2.5
		3	9	190	20000	1540	3
	_	3	15	150	16000	1320	3
		4	12	250	20000	1980	4
	-	4	20	200	16000	1650	4
		5	15	310	20000	2420	5
	Lega di alluminio	5	25	250	16000	1980	5
N	A2000 – A7000 Serie	6	18	350	18600	2750	6
	-	6	30	280	14800	2200	6
		7	21	350	15900	2750	7
	_	7	35	280	12700	2200	7
		8	24	350	13900	2860	8
	-	8	40	280	11100	2310	8
		9	27	350	12400	2860	9
		9	45	280	9900	2310	9
		10	30	350	11100	2860	10
		10	50	280	8800	2310	10
		11	33	350	10100	2860	11
		11	55	280	8100	2310	11
		12	36	350	9300	2860	12
	_	12	60	280	7400	2310	12

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità di taglio e velocità di avanzamento.
- Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
 Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

CAVA DAL PIENO

Materiale	DC	LU	Vc	n	f	ар
	1	3	60	20000	660	1
	1	5	50	16000	550	1
	1.5	4.5	90	20000	660	1.5
	1.5	8	80	16000	550	1.5
	2	6	130	20000	990	2
	2	10	100	16000	880	2
	2.5	7.5	160	20000	990	2.5
	2.5	12.5	130	16000	880	2.5
	3	9	190	20000	1320	3
	3	15	150	16000	1100	3
	4	12	230	18300	1540	4
	4	20	180	14600	1320	4
Fusioni in lega di alluminio,	5	15	230	14600	1540	5
Rame,	5	25	180	11700	1320	5
Legne di rame,	6	18	230	12200	1540	6
Resine	6	30	180	9700	1320	6
	7	21	230	10500	1540	7
	7	35	180	8200	1320	7
	8	24	230	9200	1540	8
	8	40	180	7300	1320	8
	9	27	230	8100	1540	9
	9	45	180	6400	1320	9
	10	30	230	7300	1540	10
	10	50	180	5800	1320	10
	11	33	230	6700	1540	11
	11	55	180	5200	1320	11
	12	36	230	6100	1650	12
	12	60	180	4800	1320	12

3/3

- 1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori,
- regolare proporzionalmente velocità di taglio e velocità di avanzamento.

 2. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

 3. Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

FRESATURA A TUFFO

Materiale	DC	LU	Vc	n	f
	1	3	60	20000	220
	1	5	50	16000	180
	1.5	4.5	90	20000	220
	1.5	8	80	16000	180
	2	6	130	20000	330
	2	10	100	16000	260
	2.5	7.5	160	20000	330
	2.5	12.5	130	16000	260
	3	9	190	20000	330
	3	15	150	16000	260
	4	12	250	20000	330
	4	20	200	16000	260
	5	15	310	19700	330
Lega di alluminio	5	25	250	15700	260
A1000 Serie	6	18	310	16500	330
	6	30	250	13200	260
	7	21	310	14100	220
	7	35	250	11400	180
	8	24	310	12300	220
	8	40	250	9800	180
	9	27	310	11000	220
	9	45	250	8800	180
	10	30	310	9900	110
	10	50	250	7900	90
	11	33	310	9000	110
	11	55	250	7200	90
	12	36	310	8200	110
	12	60	250	6500	90

1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori,

regolare proporzionalmente velocità di taglio e velocità di avanzamento.

2. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

3. Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

FRESATURA A TUFFO

Materiale	DC	LU	Vc	n	f
	1	3	60	20000	220
	1	5	50	16000	180
	1.5	4.5	90	20000	220
	1.5	8	80	16000	180
	2	6	130	20000	330
	2	10	100	16000	260
	2.5	7.5	160	20000	330
	2.5	12.5	130	16000	260
	3	9	190	20000	330
	3	15	150	16000	260
	4	12	250	20000	440
	4	20	200	16000	350
	5	15	310	20000	440
Lega di alluminio	5	25	250	16000	350
A2000 – A7000 Serie	6	18	350	18600	440
	6	30	280	14800	350
	7	21	350	15900	440
	7	35	280	12700	350
	8	24	350	13900	440
	8	40	280	11100	350
	9	27	350	12400	330
	9	45	280	9900	260
	10	30	350	11100	330
	10	50	280	8800	260
	11	33	350	10100	330
	11	55	280	8100	260
	12	36	350	9300	330
	12	60	280	7400	260

Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità di taglio e velocità di avanzamento.
 Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

^{3.} Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

FRESATURA A TUFFO

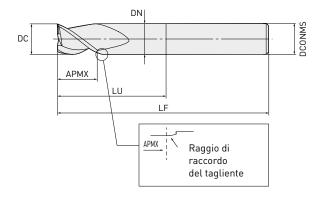
	Materiale	DC	LU	Vc	n	f
		1	3	60	20000	170
	-	1	5	50	16000	130
		1.5	4.5	90	20000	170
	_	1.5	8	80	16000	130
		2	6	130	20000	280
	_	2	10	100	16000	220
		2.5	7.5	160	20000	280
		2.5	12.5	130	16000	220
		3	9	190	20000	280
		3	15	150	16000	220
		4	12	230	18300	220
		4	20	180	14600	180
	Fusioni in lega di alluminio,	5	15	230	14600	170
N	Rame,	5	25	180	11700	130
IN	Leghe di rame,	6	18	230	12200	170
	Resine	6	30	180	9700	130
		7	21	230	10500	150
	_	7	35	180	8200	110
		8	24	230	9200	130
	_	8	40	180	7300	110
		9	27	230	8100	130
	_	9	45	180	6400	110
		10	30	230	7300	90
		10	50	180	5800	80
		11	33	230	6700	90
		11	55	180	5200	80
		12	36	230	6100	70
		12	60	180	4800	60

1. Se la rigidità della macchina o del bloccaggio del pezzo da lavorare è ridotta, o se si verificano vibrazioni o rumori, regolare proporzionalmente velocità di taglio e velocità di avanzamento.

2. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

3. Il rivestimento DLC è la prima scelta per i materiali come le resine. Se la qualità della superficie o la durata dell'utensile risultano ridotte, utilizzare un prodotto non rivestito.

A3SA



FRESA, LUNGHEZZA TAGLIENTE CORTA, 3 TAGLIENTI, RASTREMAZIONE CILINDRICA, FORI INTERNI ELICOIDALI PER IL PASSAGGIO DEL REFRIGERANTE

DC=12	DC>12
0	0
-0.020	-0.030
12 <dconms<16< td=""><td>20<dconms<25< td=""></dconms<25<></td></dconms<16<>	20 <dconms<25< td=""></dconms<25<>
0	0
0.011	_0.013

- Stabilità ed affidabilità anche durante operazioni di cava dal pieno, rampa e fresatura a tuffo.
- La geometria della sezione trasversale delle eliche è perfetta per un'efficace evacuazione dei trucioli.

Codice ordinazione	Disponibilità	DC	АРМХ	LU	DN	LF	DCONMS	ZEFP
A3SA120N36C	•	12	18	36	11.4	80	12	
A3SA160N48C	•	16	24	48	15.4	90	16	-
A3SA200N55C	•	20	30	55	18	100	20	3
A3SA250N55C	•	25	37.5	55	23	100	25	
								1/1

A3SA

CONDIZIONI DI TAGLIO RACCOMANDATE

CONDIZIONI AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ae	ар	n	Vf	ар
	12	33000	15000	6	12	33000	15000	6
N. I ama di allumainia	16	33000	20000	8	16	33000	20000	8
N Lega di alluminio	20	33000	26000	10	20	33000	26000	10
	25	33000	32000	12.5	25	33000	32000	12.5
		THIRM!	DC	ap				

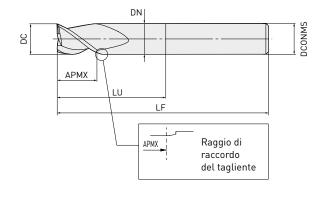
CONDIZIONI DI USO GENERICO

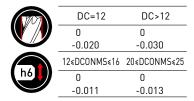
	Materiale	DC	n	Vf	ae	ар	n	Vf	ар				
	Lega di alluminio	12	16000	7200	6	12	33000	7200	6				
		16	12000	7200	8	16	33000	7200	8				
IN		20	9500	7400	10	20	33000	7400	10				
		25	7600	7300	12.5	25	33000	7300	12.5				
			THINNING IN	DC	ap								

 ${\it 1. \,\, Si\,\, raccomanda\,\, di\,\, utilizzare\,\, un\,\, fluido\,\, da\,\, taglio\,\, solubile\,\, in\,\, acqua.}$

- 2. Per il taglio in spallamento si raccomanda la fresatura concorde.
- 3. Nelle lavorazioni con elevati sbalzi utensile, regolare velocità, avanzamento e profondità di taglio secondo necessità.
- 4. Se la rigidità della macchina o dello staffaggio pezzo è scarsa, o se si verificano vibrazioni o rumori anomali, ridurre proporzionalmente il numero di giri e la velocità di avanzamento entro l'intervallo descritto nella tabella precedente, oppure ridurre la profondità e la larghezza di taglio.

DLC3SA





FRESA, LUNGHEZZA TAGLIENTE CORTA, 3 TAGLIENTI, RASTREMAZIONE CILINDRICA, FORI INTERNI ELICOIDALI PER IL PASSAGGIO DEL REFRIGERANTE

- Stabilità ed affidabilità anche durante operazioni di cava dal pieno, rampa e fresatura a tuffo.
- La geometria della sezione trasversale delle eliche è perfetta per un'efficace evacuazione dei trucioli.

Codice ordinazione	Disponibilità	DC	АРМХ	LU	DN	LF	DCONMS	ZEFP	
DLC3SA120N36C	*	12	18	36	11.4	80	12	2	
DLC3SA160N48C	*	16	24	48	15.4	90	16		
DLC3SA200N55C	*	20	30	55	18	100	20	3	
DLC3SA250N55C	*	25	37.5	55	23	100	25		

DLC3SA

CONDIZIONI DI TAGLIO RACCOMANDATE

CONDIZIONI AD ALTA EFFICIENZA

Materiale	DC	n	Vf	ae	ар	n	Vf	ар
	12	33000	15000	6	12	33000	15000	6
N. Logo di alluminio	16	33000	20000	8	16	33000	20000	8
N Lega di alluminio	20	33000	26000	10	20	33000	26000	10
	25	33000	32000	12.5	25	33000	32000	12.5
		Thang	DC	- ap -				

CONDIZIONI DI USO GENERICO

Materiale	DC	n	Vf	ae	ар	n	Vf	ар
	12	16000	7200	6	12	33000	7200	6
	16	12000	7200	8	16	33000	7200	8
N Lega di alluminio	20	9500	7400	10	20	33000	7400	10
	25	7600	7300	12.5	25	33000	7300	12.5
			DC	ap				

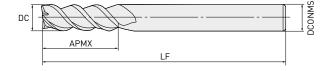
1. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.

2. Per il taglio in spallamento si raccomanda la fresatura concorde.

3. Nelle lavorazioni con elevati sbalzi utensile, regolare velocità, avanzamento e profondità di taglio secondo necessità.

4. Se la rigidità della macchina o dello staffaggio pezzo è scarsa, o se si verificano vibrazioni o rumori anomali, ridurre proporzionalmente il numero di giri e la velocità di avanzamento entro l'intervallo descritto nella tabella precedente, oppure ridurre la profondità e la larghezza di taglio.

AM3MF



SERIE MEDIA, 3 TAGLIENTI, LAVORAZIONI DI FINITURA, TAGLIENTE AL CENTRO

DC=6	6 <dc≤16< th=""></dc≤16<>
-0.015	-0.02
-0.038	-0.047

- Fresa integrale versatile per cave e fresatura dell'alluminio.
- Per lavorazione di finitura di alta qualità e alta precisione.

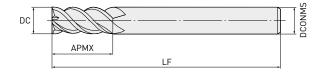
Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP
AM3MFD0600A050	•	6	13	50	6	
AM3MFD0800A060	•	8	19	60	8	
AM3MFD1000A075	•	10	22	75	10	3
AM3MFD1200A075	•	12	26	75	12	
AM3MFD1600A090	•	16	32	90	16	

1/1

CONDIZIONI DI TAGLIO RACCOMANDATE

Materiale	DC	n	Vf
	6	20000	4200
	8	17000	5100
Lega di alluminio	10	15000	5400
	12	12000	5400
	16	10000	4800
		0.05DC DC DC 0.1	- 0.3DC

AM4MF



SERIE MEDIA, 4 TAGLIENTI, LAVORAZIONI DI FINITURA, **TAGLIENTE AL CENTRO**

- Fresa integrale versatile, a 4 taglienti, per alluminio.
- Per lavorazione di finitura di alta qualità e alta precisione.

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP
AM4MFD2000A100	•	20	38	100	20	,
AM4MFD2500A125	•	25	45	125	25	4
						1/1

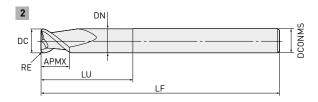
CONDIZIONI DI TAGLIO RACCOMANDATE

Materiale	DC	n	Vf
Lega di alluminio	20	8000	5700
	25	6000	4800
	0.05DC		D.1 – 0.3DC
		•	

AM2SCRB

FRESA INTEGRALE A 2 TAGLIENTI, TORICA, LUNGHEZZA DI TAGLIO CORTA, CON SCARICO

LF

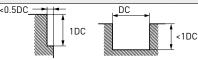


	DC≤12	DC>12
) _	0	0
	-0.020	-0.030

• Elevata efficienza su lavorazioni di leghe di alluminio.

	ilità									
Codice ordinazione	Disponibilità	DC	RE	АРМХ	LU	DN	LF	DCONMS	ZEFP	Tipo
AM2SCRBD0300A060R030	•	3	0.3	6	12	2.7	60	6	2	1
AM2SCRBD0300A060R050	•	3	0.5	6	12	2.7	60	6	2	1
AM2SCRBD0400A060R030	•	4	0.3	6	12	3.7	60	6	2	1
AM2SCRBD0400A060R050	•	4	0.5	6	12	3.7	60	6	2	1
AM2SCRBD0500A060R030	•	5	0.3	8	15	4.7	60	6	2	1
AM2SCRBD0500A060R050	•	5	0.5	8	15	4.7	60	6	2	1
AM2SCRBD0600A075R030	•	6	0.3	8	16	5.7	75	6	2	2
AM2SCRBD0600A075R050	•	6	0.5	8	16	5.7	75	6	2	2
AM2SCRBD0600A075R100	•	6	1	8	16	5.7	75	6	2	2
AM2SCRBD0800A075R030	•	8	0.3	10	20	7.4	75	8	2	2
AM2SCRBD0800A075R050	•	8	0.5	10	20	7.4	75	8	2	2
AM2SCRBD0800A075R100	•	8	1	10	20	7.4	75	8	2	2
AM2SCRBD0800A075R160	•	8	1.6	10	20	7.4	75	8	2	2
AM2SCRBD0800A075R250	•	8	2.5	10	20	7.4	75	8	2	2
AM2SCRBD1000A075R030	•	10	0.3	12	30	9.4	75	10	2	2
AM2SCRBD1000A075R050	•	10	0.5	12	30	9.4	75	10	2	2
AM2SCRBD1000A075R100	•	10	1	12	30	9.4	75	10	2	2
AM2SCRBD1000A075R160	•	10	1.6	12	30	9.4	75	10	2	2
AM2SCRBD1000A075R250	•	10	2.5	12	30	9.4	75	10	2	2
AM2SCRBD1000A100R030	•	10	0.3	12	35	9.4	100	10	2	2
AM2SCRBD1000A100R050	•	10	0.5	12	35	9.4	100	10	2	2
AM2SCRBD1000A100R100	•	10	1	12	35	9.4	100	10	2	2
AM2SCRBD1000A100R160	•	10	1.6	12	35	9.4	100	10	2	2
AM2SCRBD1000A100R250	•	10	2.5	12	35	9.4	100	10	2	2

AM2SCRB – FRESA INTEGRALE A 2 TAGLIENTI, TORICA, LUNGHEZZA DI TAGLIO CORTA, CON SCARICO



Codice ordinazione	Disponibilità	DC	RE	АРМХ	LU	DN	LF	DCONMS	ZEFP	Tipo
AM2SCRBD1200A075R030	•	12	0.3	15	30	11.4	75	12	2	2
AM2SCRBD1200A075R050	•	12	0.5	15	30	11.4	75	12	2	2
AM2SCRBD1200A075R100	•	12	1	15	30	11.4	75	12	2	2
AM2SCRBD1200A075R160	•	12	1.6	15	30	11.4	75	12	2	2
AM2SCRBD1200A075R250	•	12	2.5	15	30	11.4	75	12	2	2
AM2SCRBD1200A075R320	•	12	3.2	15	30	11.4	75	12	2	2
AM2SCRBD1200A075R400	•	12	4	15	30	11.4	75	12	2	2
AM2SCRBD1200A100R030	•	12	0.3	15	35	11.4	100	12	2	2
AM2SCRBD1200A100R050	•	12	0.5	15	35	11.4	100	12	2	2
AM2SCRBD1200A100R100	•	12	1	15	35	11.4	100	12	2	2
AM2SCRBD1200A100R160	•	12	1.6	15	35	11.4	100	12	2	2
AM2SCRBD1200A100R250	•	12	2.5	15	35	11.4	100	12	2	2
AM2SCRBD1200A100R320	•	12	3.2	15	35	11.4	100	12	2	2
AM2SCRBD1200A100R400	•	12	4	15	35	11.4	100	12	2	2
AM2SCRBD1200A125R030	•	12	0.3	15	40	11.4	125	12	2	2
AM2SCRBD1200A125R050	•	12	0.5	15	40	11.4	125	12	2	2
AM2SCRBD1200A125R100	•	12	1	15	40	11.4	125	12	2	2
AM2SCRBD1200A125R160	•	12	1.6	15	40	11.4	125	12	2	2
AM2SCRBD1200A125R250	•	12	2.5	15	40	11.4	125	12	2	2
AM2SCRBD1200A125R320	•	12	3.2	15	40	11.4	125	12	2	2
AM2SCRBD1200A125R400	•	12	4	15	40	11.4	125	12	2	2
AM2SCRBD1600A075R100	•	16	1	15	30	15.4	75	16	2	2
AM2SCRBD1600A075R160	•	16	1.6	15	30	15.4	75	16	2	2
AM2SCRBD1600A075R250	•	16	2.5	15	30	15.4	75	16	2	2
AM2SCRBD1600A075R320	•	16	3.2	15	30	15.4	75	16	2	2
AM2SCRBD1600A075R400	•	16	4	15	30	15.4	75	16	2	2
AM2SCRBD1600A100R100	•	16	1	15	40	15.4	100	16	2	2
AM2SCRBD1600A100R160	•	16	1.6	15	40	15.4	100	16	2	2
AM2SCRBD1600A100R250	•	16	2.5	15	40	15.4	100	16	2	2
AM2SCRBD1600A100R320	•	16	3.2	15	40	15.4	100	16	2	2
AM2SCRBD1600A100R400	•	16	4	15	40	15.4	100	16	2	2
AM2SCRBD1600A125R100	•	16	1	15	45	15.4	125	16	2	2
AM2SCRBD1600A125R160	•	16	1.6	15	45	15.4	125	16	2	2
AM2SCRBD1600A125R250	•	16	2.5	15	45	15.4	125	16	2	2
AM2SCRBD1600A125R320	•	16	3.2	15	45	15.4	125	16	2	2
AM2SCRBD1600A125R400	•	16	4	15	45	15.4	125	16	2	2
AM2SCRBD2000A100R100	•	20	1	20	40	18.0	100	20	2	2
AM2SCRBD2000A100R160	•	20	1.6	20	40	18.0	100	20	2	2
AM2SCRBD2000A100R250	•	20	2.5	20	40	18.0	100	20	2	2
AM2SCRBD2000A100R320	•	20	3.2	20	40	18.0	100	20	2	2
AM2SCRBD2000A100R400	•	20	4	20	40	18.0	100	20	2	2
AM2SCRBD2000A125R100	•	20	1	20	50	18.0	125	20	2	2
AM2SCRBD2000A125R160	•	20	1.6	20	50	18.0	125	20	2	2
AM2SCRBD2000A125R250	•	20	2.5	20	50	18.0	125	20	2	2
AM2SCRBD2000A125R320	•	20	3.2	20	50	18.0	125	20	2	2
AM2SCRBD2000A125R400	•	20	4	20	50	18.0	125	20	2	2

AM2SCRB

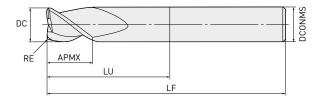
CONDIZIONI DI TAGLIO RACCOMANDATE

			v	Vf		
Materiale	DC	n	Fresatura in contornatura	Fresatura di cave		
	3	40000	1800	1600		
	4	36000	2400	2100		
	5	30000	3000	2700		
	6	27000	3200	2800		
Lega di alluminio	8	20000	3400	3000		
	10	16000	3600	3200		
	12	13000	3600	3200		
	16	10000	3600	3200		
	20	8000	3300	3000		

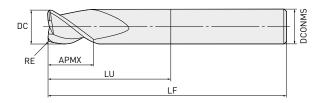
1/1

- 1. Questa tabella mostra i parametri con sporgenze inferiori a 4DC. Se si lavora con sporgenze oltre 4DC, la velocità di rotazione e l'avanzamento devono essere ridotti.
- 2. Se la rigidità della macchina o lo staffaggio installazione del pezzo da lavorare è molto bassa o se vengono generate vibrazioni e rumore, ridurre in proporzione il numero di giri e la velocità di avanzamento.
- 3. Si raccomanda l'utilizzo di fluido da taglio solubile in acqua.
- 4. Si raccomanda taglio concorde per la fresatura in contornatura.

AM3SSRB



FRESA INTEGRALE A 3 TAGLIENTI, TORICA, LUNGHEZZA DI TAGLIO CORTA, CON SCARICO


DC≤12	DC>12
0	0
-0.020	-0.030

• Elevata efficienza su lavorazioni di leghe di alluminio.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LU	LF	DCONMS	ZEFP
AM3SSRBD1200A075R100	•	12	1	15	30	75	12	3
AM3SSRBD1200A075R160	•	12	1.6	15	30	75	12	3
AM3SSRBD1200A075R250	•	12	2.5	15	30	75	12	3
AM3SSRBD1200A075R320	•	12	3.2	15	30	75	12	3
AM3SSRBD1200A075R400	•	12	4	15	30	75	12	3
AM3SSRBD1200A100R100	•	12	1	15	35	100	12	3
AM3SSRBD1200A100R160	•	12	1.6	15	35	100	12	3
AM3SSRBD1200A100R250	•	12	2.5	15	35	100	12	3
AM3SSRBD1200A100R320	•	12	3.2	15	35	100	12	3
AM3SSRBD1200A100R400	•	12	4	15	35	100	12	3
AM3SSRBD1200A125R100	•	12	1	15	40	125	12	3
AM3SSRBD1200A125R160	•	12	1.6	15	40	125	12	3
AM3SSRBD1200A125R250	•	12	2.5	15	40	125	12	3
AM3SSRBD1200A125R320	•	12	3.2	15	40	125	12	3
AM3SSRBD1200A125R400	•	12	4	15	40	125	12	3
AM3SSRBD1600A075R100	•	16	1	15	30	75	16	3
AM3SSRBD1600A075R160	•	16	1.6	15	30	75	16	3
AM3SSRBD1600A075R250	•	16	2.5	15	30	75	16	3
AM3SSRBD1600A075R320	•	16	3.2	15	30	75	16	3
AM3SSRBD1600A075R400	•	16	4	15	30	75	16	3

AM3SSRB - FRESA INTEGRALE A 3 TAGLIENTI, TORICA, LUNGHEZZA DI TAGLIO CORTA, CON SCARICO

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LU	LF	DCONMS	ZEFP
AM3SSRBD1600A100R100	•	16	1	15	40	100	16	3
AM3SSRBD1600A100R160	•	16	1.6	15	40	100	16	3
AM3SSRBD1600A100R250	•	16	2.5	15	40	100	16	3
AM3SSRBD1600A100R320	•	16	3.2	15	40	100	16	3
AM3SSRBD1600A100R400	•	16	4	15	40	100	16	3
AM3SSRBD1600A125R100	•	16	1	15	45	125	16	3
AM3SSRBD1600A125R160	•	16	1.6	15	45	125	16	3
AM3SSRBD1600A125R250	•	16	2.5	15	45	125	16	3
AM3SSRBD1600A125R320	•	16	3.2	15	45	125	16	3
AM3SSRBD1600A125R400	•	16	4	15	45	125	16	3
AM3SSRBD2000A100R100	•	20	1	20	40	100	20	3
AM3SSRBD2000A100R160	•	20	1.6	20	40	100	20	3
AM3SSRBD2000A100R250	•	20	2.5	20	40	100	20	3
AM3SSRBD2000A100R320	•	20	3.2	20	40	100	20	3
AM3SSRBD2000A100R400	•	20	4	20	40	100	20	3
AM3SSRBD2000A125R100	•	20	1	20	60	125	20	3
AM3SSRBD2000A125R160	•	20	1.6	20	60	125	20	3
AM3SSRBD2000A125R250	•	20	2.5	20	60	125	20	3
AM3SSRBD2000A125R320	•	20	3.2	20	60	125	20	3
AM3SSRBD2000A125R400	•	20	4	20	60	125	20	3
AM3SSRBD2000A150R100	•	20	1	20	85	150	20	3
AM3SSRBD2000A150R160	•	20	1.6	20	85	150	20	3
AM3SSRBD2000A150R250	•	20	2.5	20	85	150	20	3
AM3SSRBD2000A150R320	•	20	3.2	20	85	150	20	3
AM3SSRBD2000A150R400	•	20	4	20	85	150	20	3
AM3SSRBD2500A100R160	•	25	1.6	20	50	100	25	3
AM3SSRBD2500A100R250	•	25	2.5	20	50	100	25	3
AM3SSRBD2500A100R320	•	25	3.2	20	50	100	25	3
AM3SSRBD2500A100R400	•	25	4	20	50	100	25	3
AM3SSRBD2500A100R500	•	25	5	20	50	100	25	3
AM3SSRBD2500A125R160	•	25	1.6	20	65	125	25	3
AM3SSRBD2500A125R250	•	25	2.5	20	65	125	25	3
AM3SSRBD2500A125R320	•	25	3.2	20	65	125	25	3
AM3SSRBD2500A125R400	•	25	4	20	65	125	25	3
AM3SSRBD2500A125R500	•	25	5	20	65	125	25	3
AM3SSRBD2500A150R160	•	25	1.6	20	90	150	25	3
AM3SSRBD2500A150R250	•	25	2.5	20	90	150	25	3
AM3SSRBD2500A150R320	•	25	3.2	20	90	150	25	3
AM3SSRBD2500A150R400	•	25	4	20	90	150	25	3
AM3SSRBD2500A150R500	•	25	5	20	90	150	25	3

AM3SSRB

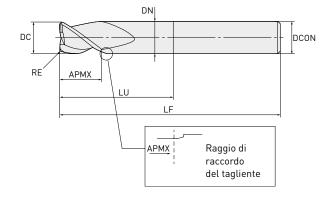
CONDIZIONI DI TAGLIO RACCOMANDATE

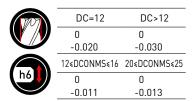
			Vf		
Materiale	DC	n	Fresatura in contornatura	Fresatura di cave	
	12	13000	5400	3200	
Land dia Usuminia	16	10000	5400	3200	
Lega di alluminio	20	8000	5000	3000	
	25	6000	4500	2800	
	<0.3DC	0.8DC	<0.5DC		

1. Questa tabella mostra i parametri con sporgenze inferiori a 4DC. Se si lavora con sporgenze oltre 4DC, la velocità di rotazione e l'avanzamento devono essere ridotti.

- 2. Se la rigidità della macchina o lo staffaggio installazione del pezzo da lavorare è molto bassa o se vengono generati vibrazioni e rumore, ridurre in proporzione il numero di giri e la velocità di avanzamento.
- 3. Si raccomanda l'utilizzo di fluido da taglio solubile in acqua.
- 4. Si raccomanda taglio concorde per la fresatura in contornatura.
- 5. L'avanzamento in verticale non è consigliato. È preferibile l'entrata in rampa.

A3SARB





FRESA TORICA, LUNGHEZZA TAGLIENTE CORTA, 3 TAGLIENTI, RASTREMAZIONE CILINDRICA, FORI INTERNI ELICOIDALI PER IL PASSAGGIO DEL REFRIGERANTE

- Stabilità ed affidabilità anche durante operazioni di cava dal pieno, rampa e fresatura a tuffo.
- La geometria della sezione trasversale delle eliche è perfetta per un'efficace evacuazione dei trucioli.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LU	DN	LF	DCONMS	ZEFP
A3SARB120R100N36C	•	12	1	18	36	11.4	80	12	
A3SARB120R200N36C	•	12	2	18	36	11.4	80	12	
A3SARB120R300N36C	•	12	3	18	36	11.4	80	12	
A3SARB160R200N48C	•	16	2	24	48	15.4	90	16	
A3SARB160R300N48C	•	16	3	24	48	15.4	90	16	
A3SARB160R400N48C	•	16	4	24	48	15.4	90	16	
A3SARB200R200N55C	•	20	2	30	55	18	100	20	3
A3SARB200R300N55C	•	20	3	30	55	18	100	20	
A3SARB200R400N55C	•	20	4	30	55	18	100	20	
A3SARB250R200N55C	•	25	2	37.5	55	23	100	25	
A3SARB250R300N55C	•	25	3	37.5	55	23	100	25	
A3SARB250R400N55C	•	25	4	37.5	55	23	100	25	
A3SARB250R500N55C	•	25	5	37.5	55	23	100	25	

A3SARB

CONDIZIONI DI TAGLIO RACCOMANDATE

CONDIZIONI AD ALTA EFFICIENZA

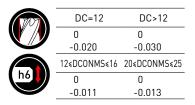
Materiale	DC	n	Vf	ae	ар	n	Vf	ар
	12	33000	15000	6	12	33000	15000	6
Loga di alluminio	16	33000	20000	8	16	33000	20000	8
N Lega di alluminio	20	33000	26000	10	20	33000	26000	10
	25	33000	32000	12.5	25	33000	32000	12.5
	ae - 1- ap							- ap -

CONDIZIONI DI USO GENERICO

Materiale	DC	n	Vf	ae	ар	n	Vf	ар
	12	16000	7200	6	12	33000	7200	6
Lega di alluminio	16	12000	7200	8	16	33000	7200	8
Lega di attuminio	20	9500	7400	10	20	33000	7400	10
	25	7600	7300	12.5	25	33000	7300	12.5
			DC .	ар				

- 1. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
- 2. Per il taglio in spallamento si raccomanda la fresatura concorde.
- 3. Nelle lavorazioni con elevati sbalzi utensile, regolare velocità, avanzamento e profondità di taglio secondo necessità.
- 4. Se la rigidità della macchina o dello staffaggio pezzo è scarsa, o se si verificano vibrazioni o rumori anomali, ridurre proporzionalmente il numero di giri e la velocità di avanzamento entro l'intervallo descritto nella tabella precedente, oppure ridurre la profondità e la larghezza di taglio.

DLC3SARB



FRESA TORICA, LUNGHEZZA TAGLIENTE CORTA, 3 TAGLIENTI, RASTREMAZIONE CILINDRICA, FORI INTERNI ELICOIDALI PER IL PASSAGGIO DEL REFRIGERANTE

- Stabilità ed affidabilità anche durante operazioni di cava dal pieno, rampa e fresatura a tuffo.
- La geometria della sezione trasversale delle eliche è perfetta per un'efficace evacuazione dei trucioli.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LU	DN	LF	DCONMS	ZEFP
DLC3SARB120R100N36C	*	12	1	18	36	11.4	80	12	
DLC3SARB120R200N36C	*	12	2	18	36	11.4	80	12	
DLC3SARB120R300N36C	*	12	3	18	36	11.4	80	12	
DLC3SARB160R200N48C	*	16	2	24	48	15.4	90	16	
DLC3SARB160R300N48C	*	16	3	24	48	15.4	90	16	
DLC3SARB160R400N48C	*	16	4	24	48	15.4	90	16	
DLC3SARB200R200N55C	*	20	2	30	55	18	100	20	3
DLC3SARB200R300N55C	*	20	3	30	55	18	100	20	
DLC3SARB200R400N55C	*	20	4	30	55	18	100	20	
DLC3SARB250R200N55C	*	25	2	37.5	55	23	100	25	
DLC3SARB250R300N55C	*	25	3	37.5	55	23	100	25	
DLC3SARB250R400N55C	*	25	4	37.5	55	23	100	25	
DLC3SARB250R500N55C	*	25	5	37.5	55	23	100	25	

61 Vc

DLC3SARB

CONDIZIONI DI TAGLIO RACCOMANDATE

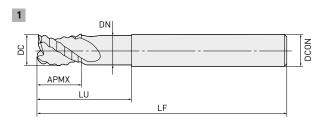
CONDIZIONI AD ALTA EFFICIENZA

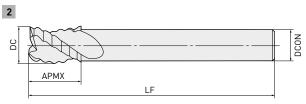
Materiale	DC	n	Vf	ae	ар	n	Vf	ар
	12	33000	15000	6	12	33000	15000	6
Lega di alluminio	16	33000	20000	8	16	33000	20000	8
	20	33000	26000	10	20	33000	26000	10
	25	33000	32000	12.5	25	33000	32000	12.5
			DC -	- ap -				

CONDIZIONI DI USO GENERICO

Materiale	DC	n	Vf	ae	ар	n	Vf	ар
	12	16000	7200	6	12	33000	7200	6
Laga di alluminia	16	12000	7200	8	16	33000	7200	8
N Lega di alluminio	20	9500	7400	10	20	33000	7400	10
	25	7600	7300	12.5	25	33000	7300	12.5
	ae de							ap

- 1. Si raccomanda di utilizzare un fluido da taglio solubile in acqua.
- 2. Per il taglio in spallamento si raccomanda la fresatura concorde.
- 3. Nelle lavorazioni con elevati sbalzi utensile, regolare velocità, avanzamento e profondità di taglio secondo necessità.
- 4. Se la rigidità della macchina o dello staffaggio pezzo è scarsa, o se si verificano vibrazioni o rumori anomali, ridurre proporzionalmente il numero di giri e la velocità di avanzamento entro l'intervallo descritto nella tabella precedente, oppure ridurre la profondità e la larghezza di taglio.





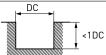
PER SGROSSATURA, SERIE CORTA, ROMPITRUCIOLO, 3 TAGLIENTI

• Fresa integrale non rivestita a 3 taglienti, per la sgrossatura di leghe di alluminio.

	ità						-		
Codice ordinazione	Disponibilità	DC	APMX	LU	DN	LF	DCONMS	ZEFP	Tipo
AMSRD1000	•	10	12	25	9.4	75	10	3	1
AMSRD1200	•	12	15	30	11.4	75	12	3	1
AMSRD1600	•	16	18	35	15.4	100	16	3	1
AMSRD1800	•	18	22	_	_	100	16	3	2
AMSRD2000	•	20	25	50	18.0	125	20	3	1
AMSRD2200	•	22	25	_	_	125	20	3	2
AMSRD2500	•	25	30	60	23.0	125	25	3	1
									1/1

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO


Materiale	DC	n	Vf
	10	19000	8600
	12	16000	8200
	16	12000	7600
Lega di alluminio A7075	18	10500	7200
77.07.0	20	9500	7100
	22	8500	6900
A.I.	25	7500	6800
	10	9500	3400
	12	8000	3200
	16	6000	3100
Pezzo fuso in lega di alluminio AC4B	18	5300	2900
	20	4800	2900
	22	4300	2800
	25	3800	2700
		√0 EDC ————	,

<1DC

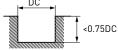
1/1

FRESATURA DI CAVE

	Materiale	DC	n	Vf
		10	19000	6800
		12	16000	6500
		16	12000	6100
	Lega di alluminio A7075	18	10500	5800
	7,070	20	9500	5700
		22	8500	5500
		25	7500	5400
N		10	9500	2700
		12	8000	2600
		16	6000	2400
	Pezzo fuso in lega di alluminio AC4B	18	5300	2400
		20	4800	2300
		22	4300	2200
		25	3800	2200
	=		DC	

1/1

- 1. Se la rigidità della macchina o l'installazione del materiale da lavorare è molto bassa o si producono vibrazioni e rumore, ridurre in proporzione il numero di giri e la velocità di avanzamento. In alternativa, ridurre la profondità di taglio.
- 2. Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e la velocità di avanzamento.
- 3. Si raccomanda l'utilizzo di fluido da taglio solubile in acqua.
- 4. Si raccomanda taglio concorde per la fresatura in contornatura.


UTILIZZO DI UN CENTRO DI LAVORAZIONE AD ALTA VELOCITÀ ED ELEVATA RIGIDITÀ

FRESATURA IN SPALLAMENTO

Materiale	DC	n	Vf
	10	30000	11000
	12	30000	12000
r e e e e	16	24000	12000
Lega di alluminio A7075	18	21000	12000
7.0070	20	19000	11000
	22	17000	11000
	25	15000	11000
	10	19000	5400
	12	16000	5300
	16	12000	4900
Pezzo fuso in lega di alluminio AC4B	18	10500	4700
AC4D	20	9500	4600
	22	8500	4300
	25	7500	4300
		<0.5DC	

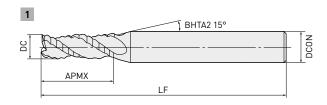
FRESATURA DI CAVE

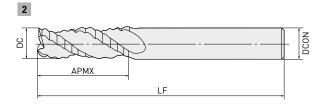
Materiale	DC	n	Vf
	10	30000	8600
	12	30000	9900
	16	24000	9700
Lega di alluminio A7075	18	21000	9500
A7073	20	19000	9100
	22	17000	8700
	25	15000	8600
	10	19000	4300
	12	16000	4300
	16	12000	4000
Pezzo fuso in lega di alluminio AC4B	18	10500	3800
	20	9500	3700
	22	8500	3400
	25	7500	3400
		DC	

1/

- 1. Se la rigidità della macchina o l'installazione del materiale da lavorare è molto bassa o si producono vibrazioni e rumore, ridurre in proporzione il numero di giri e la velocità di avanzamento. In alternativa, ridurre la profondità di taglio.
- 2. Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e la velocità di avanzamento.
- 3. Si raccomanda l'utilizzo di fluido da taglio solubile in acqua.
- 4. Si raccomanda taglio concorde per la fresatura in contornatura.

AMMR





PER SGROSSATURA, SERIE CORTA, ROMPITRUCIOLO

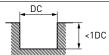
• Fresa integrale non rivestita a 3 taglienti, per la sgrossatura di leghe di alluminio.

Codice ordinazione	Disponibilità	DC	АРМХ	LF	DCONMS	ZEFP	Tipo
AMMRD0300		3	8	50	6	3	1
AMMRD0400		4	11	50	6	3	1
AMMRD0500	•	5	13	50	6	3	1
AMMRD0600	•	6	13	50	6	3	2
AMMRD0800	•	8	19	60	8	3	2
AMMRD1000	•	10	22	75	10	3	2
AMMRD1200	•	12	26	75	12	3	2
AMMRD1600	•	16	32	100	16	3	2
AMMRD2000	•	20	38	125	20	3	2
AMMRD2500	•	25	45	125	25	3	2
							1/1

AMMR

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA IN SPALLAMENTO


Materiale	DC	n	Vf
	3	40000	2700
	4	36000	2700
	5	30000	5400
	6	27000	6100
Lega di alluminio	8	20000	6000
A7075	10	16000	5800
	12	13000	5300
	16	10000	5100
	20	8000	4800
J	25	6400	4600
\	3	25000	1100
	4	20000	1100
	5	16000	2200
	6	13000	2300
Pezzo fuso in lega di alluminio	8	10000	2400
AC4B	10	8000	2300
	12	6500	2100
	16	5000	2000
	20	4000	1900
	25	3200	1800

. .

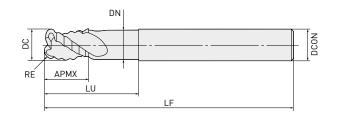
AMMR

FRESATURA DI CAVE

	Materiale	DC	n	Vf
		3	30000	1800
		4	24000	2200
	Lega di alluminio	5	19000	2300
	A7075	6	16000	2400
		8	12000	2500
NI.		10	9500	2600
IN		3	16000	700
		4	12000	900
	Pezzo fuso in lega di alluminio AC4B	5	10000	900
		6	8000	1000
		8	6000	1000
		10	5000	1100

- In caso di scarsa rigidità della macchina, scarso bloccaggio del pezzo da lavorare o formazione di vibrazioni e rumori, ridurre proporzionalmente il numero di giri e la velocità di avanzamento oppure ridurre la profondità di taglio.
 Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e la velocità di avanzamento.
 Si raccomanda l'utilizzo di fluido da taglio solubile in acqua.
 Si raccomanda taglio concorde per la fresatura in contornatura.

AMSRRB



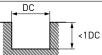
PER SGROSSATURA, SERIE CORTA, ROMPITRUCIOLO, TORICA

• Elevata produttività nella sgrossatura di leghe di alluminio.

Codice ordinazione	Disponibilità	DC	RE	АРМХ	LU	DN	LF	DCONMS	ZEFF
AMSRRBD1000R100	•	10	1	12	25	9.4	75	10	
AMSRRBD1000R200		10	2	12	25	9.4	75	10	
AMSRRBD1200R100	•	12	1	15	30	11.4	75	12	
AMSRRBD1200R200		12	2	15	30	11.4	75	12	
AMSRRBD1600R200	•	16	2	18	35	15.4	100	16	
AMSRRBD1600R300		16	3	18	35	15.4	100	16	
AMSRRBD1600R320	•	16	3.2	18	35	15.4	100	16	
AMSRRBD1600R400	•	16	4	18	35	15.4	100	16	
AMSRRBD2000R200	•	20	2	25	50	18.0	125	20	3
AMSRRBD2000R300		20	3	25	50	18.0	125	20	
AMSRRBD2000R320	•	20	3.2	25	50	18.0	125	20	
AMSRRBD2000R400	•	20	4	25	50	18.0	125	20	
AMSRRBD2000R500	•	20	5	25	50	18.0	125	20	
AMSRRBD2500R300	•	25	3	30	60	23.0	125	25	
AMSRRBD2500R320	•	25	3.2	30	60	23.0	125	25	
AMSRRBD2500R400	•	25	4	30	60	23.0	125	25	
AMSRRBD2500R500		25	5	30	60	23.0	125	25	

AMSRRB

CONDIZIONI DI TAGLIO RACCOMANDATE


FRESATURA IN SPALLAMENTO

Materiale	DC	n	Vf
	10	19000	8600
	12	16000	8200
	16	12000	7600
Lega di alluminio A7075	18	10500	7200
77.07.0	20	9500	7100
	22	8500	6900
A.I.	25	7500	6800
	10	9500	3400
	12	8000	3200
	16	6000	3100
Pezzo fuso in lega di alluminio AC4B	18	5300	2900
	20	4800	2900
	22	4300	2800
	25	3800	2700
		√0 EDC — ►1 14	,

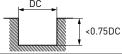
1/1

FRESATURA DI CAVE

Materiale	DC	n	Vf
	10	19000	6800
	12	16000	6500
	16	12000	6100
Lega di alluminio A7075	18	10500	5800
70070	20	9500	5700
	22	8500	5500
	25	7500	5400
N	10	9500	2700
	12	8000	2600
	16	6000	2400
Pezzo fuso in lega di alluminio AC4B	18	5300	2400
	20	4800	2300
	22	4300	2200
	25	3800	2200
		DC	

1/1

- 1. Se la rigidità della macchina o l'installazione del materiale da lavorare è molto bassa o si producono vibrazioni e rumore, ridurre in proporzione il numero di giri e la velocità di avanzamento. In alternativa, ridurre la profondità di taglio.
- 2. Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e la velocità di avanzamento.
- 3. Si raccomanda l'utilizzo di fluido da taglio solubile in acqua.
- 4. Si raccomanda taglio concorde per la fresatura in contornatura.


UTILIZZO DI UN CENTRO DI LAVORAZIONE AD ALTA VELOCITÀ ED ELEVATA RIGIDITÀ

FRESATURA IN SPALLAMENTO

Materiale	DC	n	Vf
	10	30000	11000
	12	30000	12000
	16	24000	12000
Lega di alluminio A7075	18	21000	12000
77070	20	19000	11000
	22	17000	11000
	25	15000	11000
	10	19000	5400
	12	16000	5300
	16	12000	4900
Pezzo fuso in lega di alluminio AC4B	18	10500	4700
AC4B	20	9500	4600
	22	8500	4300
	25	7500	4300
		<0.5DC	

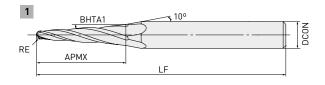
FRESATURA DI CAVE

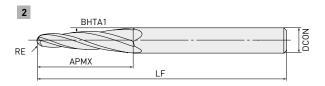
Materiale	DC	n	Vf
	10	30000	8600
	12	30000	9900
	16	24000	9700
Lega di alluminio A7075	18	21000	9500
711070	20	19000	9100
	22	17000	8700
	25	15000	8600
	10	19000	4300
	12	16000	4300
	16	12000	4000
Pezzo fuso in lega di alluminio AC4B	18	10500	3800
	20	9500	3700
	22	8500	3400
	25	7500	3400
		DC	

1/

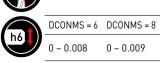
- 1. Se la rigidità della macchina o l'installazione del materiale da lavorare è molto bassa o si producono vibrazioni e rumore, ridurre in proporzione il numero di giri e la velocità di avanzamento. In alternativa, ridurre la profondità di taglio.
- 2. Se la profondità di taglio è ridotta, è possibile aumentare il numero di giri e la velocità di avanzamento.
- 3. Si raccomanda l'utilizzo di fluido da taglio solubile in acqua.
- 4. Si raccomanda taglio concorde per la fresatura in contornatura.

C4LATB





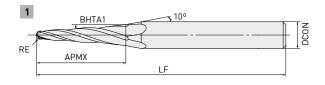
FRESA INTEGRALE A TAGLIENTE CONICO CON TESTA SEMISFERICA, 4 TAGLIENTI

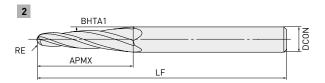


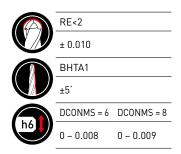
Codice ordinazione	Disponibilità	RE	АРМХ	LF	DCONMS	ВНТА1	ZEFP	Tipo
C4LATBR050T040AP20	•	0.5	20	70	6	4°	4	1
C4LATBR100T040AP20	•	1	20	70	6	4°	4	1
C4LATBR150T040AP20	•	1.5	20	75	8	4°	4	1
C4LATBR200T040AP30	•	2	30	75	8	4°	4	2

1. E' possibile fornire frese integrali coniche con testa semisferica modificata o con design speciale. Per ulteriori dettagli, si prega di contattare il proprio referente Mitsubishi Materials.

DLC4LATB






FRESA INTEGRALE A TAGLIENTE CONICO CON TESTA SEMISFERICA, 4 TAGLIENTI

Codice ordinazione	Disponibilità	RE	APMX	LF	DCONMS	ВНТА1	ZEFP	Tipo
DLC4LATBR050T040AP20	•	0.5	20	70	6	4°	4	1
DLC4LATBR100T040AP20	•	1	20	70	6	4°	4	1
DLC4LATBR150T040AP20	•	1.5	20	75	8	4°	4	1
DLC4LATBR200T040AP30	•	2	30	75	8	4°	4	2

1. E' possibile fornire frese integrali coniche con testa semisferica modificata o con design speciale. Per ulteriori dettagli, si prega di contattare un rivenditore Mitsubishi.

C4LATB/ DLC4LATB

CONDIZIONI DI TAGLIO RACCOMANDATE

FRESATURA DI CAVE

Materiale	RE	n	Vf	ар
	R 0.5	20.000	600	10
N Lega di alluminio	R 1	20.000	2.800	10
	R 1.5	20.000	4.000	10
	R 2	20.000	4.000	15

1/1

FRESATURA IN SPALLAMENTO

Materia	le	RE	n	Vf	ар	ae
		R 0.5	20.000	2.000	15	0.75
N. Logo di	alluminia	R 1	20.000	4.000	15	1.5
N Lega di alluminio	atturnino	R 1.5	20.000	5.200	15	2.25
		R 2	20.000	5.200	23	3

1/1

FRESATURA LATERALE (FINITURA)

	Materiale	RE	n	Vf	ар	ae
		R 0.5	20.000	800	18	0.1
	I Lega di alluminio	R 1	20.000	2.000	18	0.2
1	Lega di atturrinio	R 1.5	20.000	2.400	18	0.3
		R 2	20.000	2.400	27	0.3

1/1

^{1.} Si raccomanda di utilizzare un fluido da taglio solubile in acqua. Per la fresatura laterale, si raccomanda il taglio concorde.

A3SA/A3SARB

PRESTAZIONI DI TAGLIO

CONFRONTO DELLA RESISTENZA ALLA SCHEGGIATURA - LAVORAZIONE DI CAVE SU A7050

L'utilizzo di un refrigerante interno e di una geometria ottimizzata del tagliente permette di raddoppiare i livelli di efficienza rispetto ai prodotti convenzionali.

Materiale	A7050
Codice utensile DC (mm)	A3SA120N36C Ø 12
Vc (m/min)	100
ap (mm)	12
Sbalzo utensile (mm)	36
Modalità di taglio	Lubro-refrigerazione interna (Lubro-refrigerante idrosolubile)

Avanzamento tavola (mm/min)	2550	3020	3500
Avanzamento per dente (mm/dente)	0.32	0.38	0.44

A3SA

A3SARB

Buona finitura della superficie

Convenzionale A

Buona finitura della superficie

Rottura a causa dell'intasamento dei trucioli

Convenzionale B

Rottura a causa dell'intasamento dei trucioli

A3SA/A3SARB

PRESTAZIONI DI TAGLIO

CONFRONTO DELLA RESISTENZA ALLA SCHEGGIATURA - LAVORAZIONE A TUFFO SU A7050

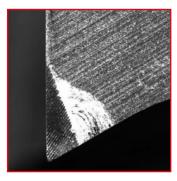
La capacità di sviluppare avanzamenti più elevati rispetto ai prodotti convenzionali incrementa l'efficienza delle lavorazioni.

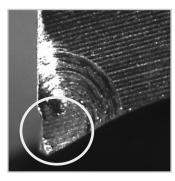
Materiale	A7050
Codice utensile DC (mm)	A3SA120N36C Ø 12
Vc (m/min)	300
ap (mm)	12
Lunghezza sporgenza (mm)	36
Modalità di taglio	Lubro-refrigerazione interna (Lubro-refrigerante idrosolubile)

Avanzamento tavola (mm/min)	1040	1280	1520
Avanzamento al giro (mm/giro)	0.13	0.16	0.19

A3SA

A3SARB





Buona finitura della superficie

IMMAGINE DEL TAGLIENTE DOPO UNA FRESATURA A TUFFO CON F = 1520 MM/MIN, FZ = 0.19 MM/GIRO

A3SA/A3SARB

Utensile convenzionale

FILIALI EUROPEE

GERMANY

MMC HARTMETALL GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone + 49 2159 91890 . Fax + 49 2159 918966

Email admin@mmchq.de

MMC HARDMETAL U.K. LTD.

Mitsubishi House . Galena Close . Tamworth . Staffs. B77 4AS

Phone + 44 1827 312312

Email sales@mitsubishicarbide.co.uk

SPAIN

MITSUBISHI MATERIALS ESPAÑA, S.A. Calle Emperador 2 . 46136 Museros/Valencia

Phone + 34 96 1441711

Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone +33 1 69 35 53 53 . Fax +33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw Phone + 48 71335 1620 . Fax + 48 71335 1621

Email sales@mitsubishicarbide.com.pl

ITALY

MMC ITALIA S.R.L.

Viale Certosa 144 . 20156 Milano

Phone +39 0293 77031 . Fax +39 0293 589093

Email info@mmc-italia.it

TURKEY

MMC HARTMETALL GMBH ALMANYA - İZMİR MERKEZ ŞUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35530 Bayraklı/İzmir

Phone + 90 232 5015000 . Fax + 90 232 5015007

Email info@mmchg.com.tr

www.mmc-carbide.com

DISTRIBUITO DA:

