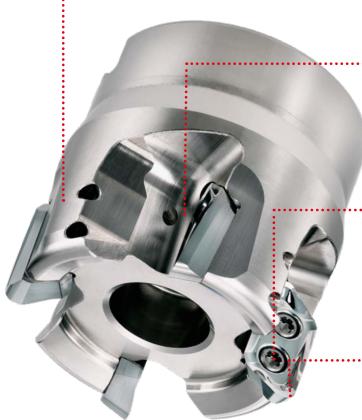
FRESA MULTIFUNCIONAL PARA EL MECANIZADO DE ALEACIONES DE ALUMINIO Y DE TITANIO A ALTAS VELOCIDADES



AXD4000A

PARA VELOCIDADES ULTRA RÁPIDAS Y MECANIZADO SUPEREFICIENTE DE ALEACIONES DE ALUMINIO

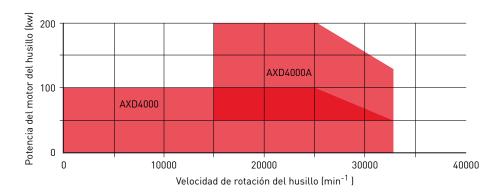
CUERPO DE ALTA RIGIDEZ

El asiento de la placa modificado en combinación con el diseño diseño rígido del cuerpo puede soportar las altas tensiones y fuerzas centrífugas durante el mecanizado a alta velocidad.

DISEÑO ÓPTIMO DE CAVIDAD PARA LAS VIRUTAS

Cavidad diseñada especialmente para una evacuación óptima de las virutas durante las operaciones de mecanizado a altas velocidades.

FIABLILIDAD

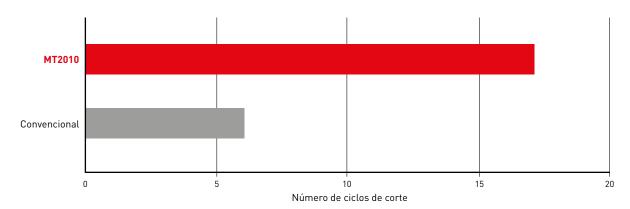

Los tornillos anti-fly garantizan el contacto 100% con la placa y pueden apretarse el doble con el par de apriete en comparación con la AXD4000 estándar. El par de fijación adicional proporciona fiabilidad de sujeción de la placa durante el mecanizado a alta velocidad.

ESTABILIDAD

Las placas de la fresa AXD4000 tienen un filo de corte con sustrato de metal duro resistente para proporcionar fiabilidad. Estas características permiten reducir las fuerzas de corte más bajas junto con una resistencia importante a las roturas.

CÓMO ELEGIR AXD4000A O AXD4000

AXD4000A está especialmente diseñada para el mecanizado continuo a alta velocidad de aleaciones de aluminio y funciona mejor en máquinas con motores de más de 80 kW.


MT2010

CALIDAD DE METAL DURO PARA EL MECANIZADO DE ALTA VELOCIDAD DE DURALUMINIO, ALUMINIO Y ALEACIONES DE LITIO.

La calidad de metal duro adecuada para el mecanizado a muy altas velocidades de corte, 5000 m/min, combinado con una excelente resistencia al desgaste y tenacidad.

RENDIMIENTO DE CORTE

ALEACIÓN AL-LI: COMPARACIÓN DE LA RESISTENCIA AL DESGASTE

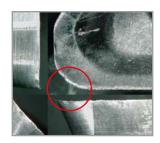
Material	Aleaciones Al-Li
Herramienta	AXD4000A-050A04RD
Calidad	XDGX175004PDFR-GM-MT2010
Vc (m/min)	5181
fz (mm/rev.)	0.15
ap (mm)	1.5
ae (mm)	39
Tipo de corte	Corte refrigerado Placa única

Después de 17 ciclos de mecanizado

Puede continuar mecanizando

Después de 6 ciclos de mecanizado

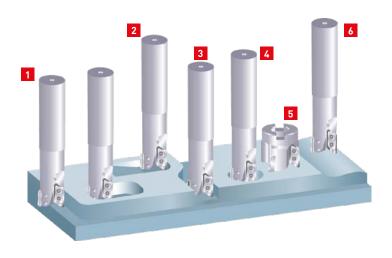
Hta. convencional El desgaste excesivo creó roturas


JIS A7050: COMPARACIÓN DE RESISTENCIA A LAS ROTURAS

Después de 90 segundos de mecanizado

Material	JIS A7050
Herramienta	AXD4000A-050A04RD
Calidad	XDGX175004PDFR-GM-MT2010
Vc (m/min)	5181
fz (mm/rev.)	0.20
ap (mm)	5.0
ae (mm)	50
Tipo de corte	Corte refrigerado

MT2010
Puede continuar mecanizando

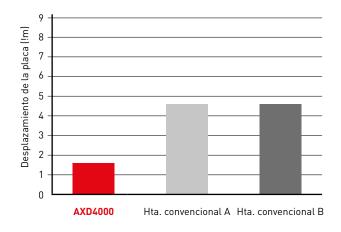

Hta. convencional Microrroturas

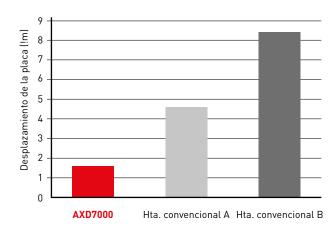
PARA MECANIZADO DE ALEACIONES DE ALUMINIO Y DE TITANIO

AXD para un excelente rendimiento en rampa y general.

FRESADO MULTIFUNCIONAL

- 1 Escuadrado
- 2 En rampa
- 3 Ranurado
- 4 Fresado helicoidal
- 5 Planeado
- 6 Copiado en 3D


GRAN ESTABILIDAD A FUERZAS CENTRÍFUGAS ELEVADAS


A velocidades de husillo elevadas, los tornillos de doble fijación evitan que la placa se desplace debido a la fuerza centrífuga. La doble fijación ofrece fiabilidad y seguridad.

Herramientas	AXD4000-050A04RA
Herramientas	AXD7000-050A03RA
Disease	XDGX175008PDFR-GL
Placa	XDGX227008PDFR-GL
Revolución	20000 min ⁻¹

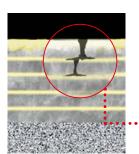
DESPLAZAMIENTO DE LA PLACA DEBIDO A LA FUERZA CENTRÍFUGA

PERMITE VELOCIDADES DE CORTE ELEVADAS

Permite obtener un fresado seguro y fiable a grandes velocidades de husillo gracias al tornillo de doble fijación y al mecanismo patentado por Mitsubishi Materials, "Anti Fly Insert" (Doble AFI).

GRAN CALIDAD DE EQUILIBRADO

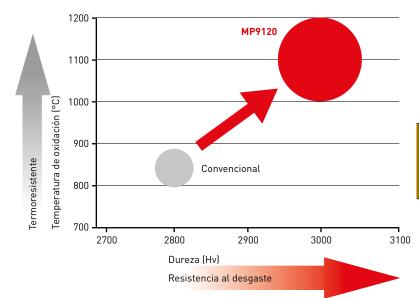
Para evitar vibraciones a altas velocidades de husillo, el portaherramientas está equilibrado a G6.3 o superior a 10.000 min⁻¹, según la norma ISO1940. (El portaherramientas se equilibra sin las placas y sin los tornillos).


CALIDADES

MP9120

RECUBRIMIENTO AL-TI-CR-N ACUMULADO

• El recubrimiento de PVD tiene propiedades como dureza, bajo coeficiente de fricción y excelente resistencia a la abrasión, al desgaste y al calor. El resultado son calidades resistentes y de precisión como MP9120.


(Representación gráfica)

Capa base rica en Al-(Al, Ti)N

La nueva tecnología de recubrimiento de Al-[Al, Ti] N favorece la estabilización de la fase de gran dureza para mejorar significativamente la resistencia al desgaste, al deterioro del cráter y al fundido.

La estructura multicapa del recubrimiento impide la formación de grietas que penetren en el sustrato.

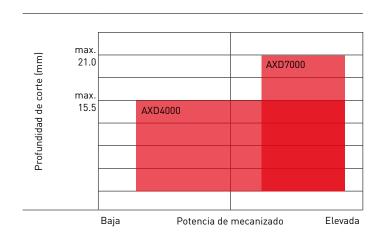
TOUGH-ΣLa fusión de tecnologías de recubrimiento distintas, PVD y multicapa, ofrece una dureza adicional.

•	Aleaciones de	MP9120	0.3 *
5	titanio, Aleaciones termorresistentes	Convencional	0.7 *

^{*}Coeficiente de fricción / Ti-6Al-4V / Medido a 600 °C

AXD4000/7000

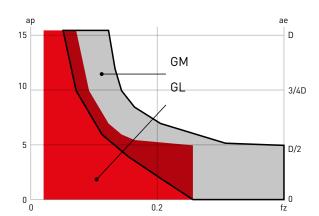
GM/AXD4000


Mejor resistencia a roturas en comparación con el rompevirutas GL

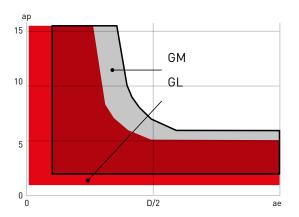
GL/AXD4000/AXD7000

El excelente afilado del rompevirutas beneficia la resistencia al corte

RECOMENDACIONES DE USO DE AXD4000 Y AXD7000

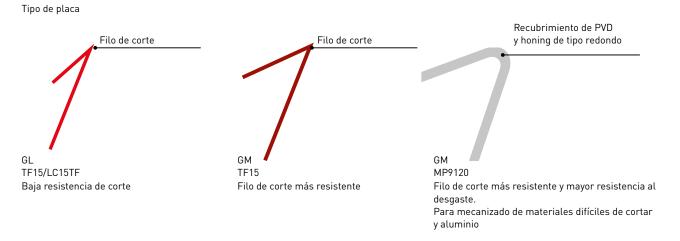


SELECCIÓN DE PLACAS AXD4000

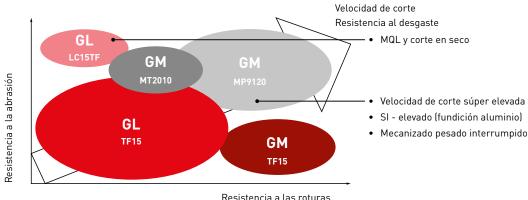

Es necesario elegir la mejor placa en función del tipo de corte y del trabajo a realizar.

La 1ª recomendación para corte estable es el rompevirutas GL con filo de corte resistente.

Selección de la placa en función del avance por diente y la profundidad de corte.



Selección de la placa en función de la anchura de corte y de la profundidad.

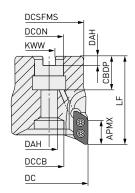


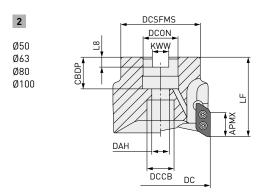
La 1ª recomendación para el mecanizado de aleaciones de aluminio es el rompevirutas GL. En casos de carga elevada como corte profundo o corte de avance elevado, se aconseja utilizar el rompevirutas

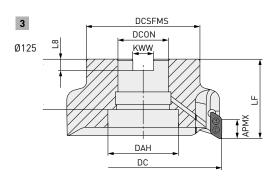
SELECCIÓN DE LA PLACA EN FUNCIÓN DEL FILO DE CORTE

SELECCIÓN DE LA PLACA EN FUNCIÓN DE LA RESISTENCIA AL DESGASTE

TIPO FRONTAL







СН :0° :+14°-15° A.R R.R :+21°-+26° :+21°-+26° :+14°-+15° 1

Ø40

Solo herramienta a mano derecha.

DC	Tornillo de fijación		(Seometría	1
Ø40	HFF08043H	1	1	2	3
Ø50, Ø63	HSC10030H			U.J.	
Ø80	12035H	2			
Ø100	16040H			 	
Ø125	MBA20040H	3	Ш		<u> </u>

Referencia	Stock	АРМХ	DC	DCON	LF	RPMX	WT	ZEFP	Tipo	RE
TIPO A										
AXD4000-040A02RA	*	15.5	40	16	50	41000	0.3	2	1	
AXD4000-040A03RA	•	15.5	40	16	50	41000	0.3	3	1	•
AXD4000-050A02RA	*	15.5	50	22	50	35000	0.4	2	2	
AXD4000-050A04RA	•	15.5	50	22	50	35000	0.4	4	2	0.4
AXD4000A-050A04RD	•	15.5	50	22	50	34000	0.4	4	2	_
AXD4000-063A05RA	•	15.5	63	22	50	30000	0.6	5	2	3.2
AXD4000-080A05RA	•	15.5	80	27	50	27000	1.0	5	2	
AXD4000-100A06RA	•	15.5	100	32	63	23000	2.0	6	2	
AXD4000-125B07RA	•	15.5	125	40	63	20000	2.8	7	3	

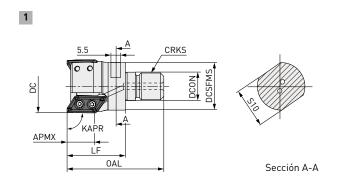
Referencia	Stock	АРМХ	DC	DCON	LF	RPMX	wT	ZEFP	Tipo	RE
TIPO B										
AXD4000-40A02RB	*	14.8	40	16	50	41000	0.3	2	1	
AXD4000-40A03RB	•	14.8	40	16	50	41000	0.3	3	1	
AXD4000-50A02RB	*	14.8	50	22	50	35000	0.4	2	2	
AXD4000-50A04RB	•	14.8	50	22	50	35000	0.4	4	2	4.0
AXD4000A-050A04RE	•	14.8	50	22	50	34000	0.4	4	2	_
AXD4000-63A05RB	•	14.8	63	22	50	30000	0.6	5	2	5.0
AXD4000-80A05RB	•	14.8	80	27	50	27000	1.0	5	2	
AXD4000-100A06RB	•	14.8	100	32	63	23000	2.0	6	2	
AXD4000-125B07RB	•	14.8	125	40	63	20000	2.8	7	3	

^{1.} Para garantizar la estabilidad de la herramienta y de las placas, se han de ajustar al máximo las velocidades de husillo permitidas.

- 2. Cuando utilice la herramienta a velocidades de husillo elevadas, compruebe que el equilibrio entre la misma y el eje es correcto.
- 3. Para placas con radio de 1.6 mm y superior, a medida que aumenta el radio, la dimensión LF disminuye.
- Fara placas con radio de 1.6 min y superiol, a medida que admenta et radio, la dimension Er distinitive.
 Los tornillos de fijación son piezas importantes desde el punto de vista de la seguridad. Utilice la referencia correcta de tornillo de fijación. Si la velocidad del husillo es igual o superior a los valores de la Tabla 2, se recomienda sustituir los tornillos de fijación por unos nuevos cuando se cambien las placas.

DIMENSIONES DE HERRAMIENTA

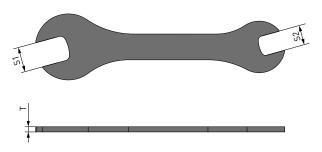
Referencia	CBDP	DAH	DCSFMS	KWW	L8	DCCB
TIPO A						
AXD4000-040A02RA	18	8.5	34	8.4	5.6	12
AXD4000-040A03RA	18	8.5	34	8.4	5.6	12
AXD4000-050A02RA	20	11	45	10.4	6.3	17
AXD4000-050A04RA	20	11	45	10.4	6.3	17
AXD4000A-050A04RD	20	11	45	10.4	6.6	17
AXD4000-063A05RA	20	11	50	10.4	6.3	17
AXD4000-080A05RA	23	13	60	12.4	7	20
AXD4000-100A06RA	26	17	78	14.4	8	26
AXD4000-125B07RA	40	56	90	16.4	9	_
TIPO B						
AXD40000-40A02RB	18	8.5	34	8.4	5.6	12
AXD40000-40A03RB	18	8.5	34	8.4	5.6	12
AXD40000-50A02RB	20	11	45	10.4	6.3	17
AXD40000-50A04RB	20	11	45	10.4	6.3	17
AXD4000A-050A04RE	20	11	45	10.4	6.3	17
AXD40000-63A05RB	20	11	50	10.4	6.3	17
AXD40000-80A05RB	23	13	60	12.4	7	20
AXD4000-100A06RB	26	17	78	14.4	8	26
AXD4000-125B07RB	40	56	90	16.4	9	_



TIPO ROSCA

Solo herramienta a mano derecha.

Referencia	Stock	APMX	DC	DCON	LF	OAL	RPMX	WT	ZEFP	Tipo	RE
TIPO A											
AXD4000R252AM1228A	•	15.0	25	12.5	28	50	49000	0.06	2	1	
AXD4000R282AM1228A	•	15.0	28	12.5	28	50	48500	0.07	2	1	=
AXD4000R322AM1635A	•	15.0	32	17.0	35	58	48000	0.15	2	1	0.4-3.2
AXD4000R353AM1635A	•	15.0	35	17.0	35	58	41000	0.15	3	1	_
AXD4000R403AM1635A	•	15.0	40	17.0	35	58	38000	0.18	3	1	
TIPO B											
AXD4000R252AM1228B	•	14.8	25	12.5	28	50	49000	0.06	2	1	
AXD4000R282AM1228B	•	14.8	28	12.5	28	50	48500	0.07	2	1	_
AXD4000R322AM1635B	•	14.8	32	17.0	35	58	48000	0.15	2	1	4.0-5.0
AXD4000R353AM1635B	•	14.8	35	17.0	35	58	41000	0.15	3	1	_
AXD4000R403AM1635B	•	14.8	40	17.0	35	58	38000	0.18	3	1	



DIMENSIONES DE MONTAJE

Referencia	CRKS	S10	DCON	DCSFMS
TIPO A				
AXD4000R252AM1228A	M12	19	12.5	23.5
AXD4000R282AM1228A	M12	19	12.5	23.5
AXD4000R322AM1635A	M16	24	17.0	28.5
AXD4000R353AM1635A	M16	24	17.0	28.5
AXD4000R403AM1635A	M16	24	17.0	28.5
TIPO B				
AXD4000R252AM1228B	M12	19	12.5	23.5
AXD4000R282AM1228B	M12	19	12.5	23.5
AXD4000R322AM1635B	M16	24	17.0	28.5
AXD4000R353AM1635B	M16	24	17.0	28.5
AXD4000R403AM1635B	M16	24	17.0	28.5

LAS PIEZAS SE VENDEN POR SEPARADO

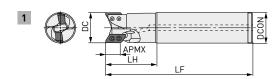
LLAVE DE MONTAJE DEL HUSILLO

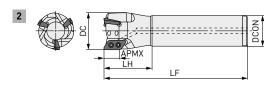
Referencia	S1 *	S2*	Т
AKY1924050A	24	19	5

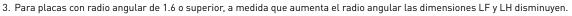
^{*} Par de sujeción (N • m) : 19 = 80, 24 = 90

● : Stock Europa. ★ : Stock Japón.

Debido a la estructura del cabezal, es posible que no se pueda utilizar una llave cualquiera para la fijación del husillo. Se recomienda utilizar esta llave especial.




TIPO MANGO



Solo herramientas a mano derecha.

Referencia	Stock	APMX	DC	DCON	LF	LH	RPMX	ZEFP	Tipo	RE
TIPO A										
AXD4000R201SA20SA	•	15.5	20	20	110	35	15000	1	1	
AXD4000R252SA25SA	•	15.5	25	25	125	50	49000	2	1	
AXD4000R252SA25LA	•	15.5	25	25	170	80	49000	2	1	
AXD4000R282SA25SA	•	15.5	28	25	125	50	48500	2	2	
AXD4000R282SA25ELA	•	15.5	28	25	220	50	48500	2	2	
AXD4000R322SA32SA	•	15.5	32	32	150	50	48000	2	1	0.4
AXD4000R322SA32LA	•	15.5	32	32	200	80	48000	2	1	3.2
AXD4000R352SA32SA	•	15.5	35	32	150	50	45000	2	2	0.2
AXD4000R352SA32ELA	•	15.5	35	32	250	50	45000	2	2	
AXD4000R403SA32SA	•	15.5	40	32	150	50	41000	3	2	
AXD4000R403SA42SA	•	15.5	40	42	170	80	41000	3	1	
AXD4000R403SA32ELA	•	15.5	40	32	250	50	41000	3	2	
TIP0 B										
AXD4000R201SA20SB	•	14.8	20	20	110	35	15000	1	1	
AXD4000R252SA25SB	•	14.8	25	25	125	50	49000	2	1	
AXD4000R252SA25LB	•	14.8	25	25	170	80	49000	2	1	
AXD4000R282SA25SB	•	14.8	28	25	125	50	48500	2	2	
AXD4000R282SA25ELB	•	14.8	28	25	220	50	48500	2	2	
AXD4000R322SA32SB	•	14.8	32	32	150	50	48000	2	1	4.0
AXD4000R322SA32LB	•	14.8	32	32	200	80	48000	2	1	- 5.0
AXD4000R352SA32SB	•	14.8	35	32	150	50	45000	2	2	0.0
AXD4000R352SA32ELB	•	14.8	35	32	250	50	45000	2	2	
AXD4000R403SA32SB	•	14.8	40	32	150	50	41000	3	2	
AXD4000R403SA42SB	•	14.8	40	42	170	80	41000	3	1	
AXD4000R403SA32ELB	•	14.8	40	32	250	50	41000	3	2	

^{1.} Para garantizar la estabilidad de la herramienta y de las placas, se han de ajustar al máximo las revoluciones permitidas.

^{2.} Cuando utilice la herramienta a velocidades de husillo elevadas, compruebé que el equilibrio entre la misma y el eje es correcto.

PLACAS

Aleación de aluminio			*		C	c		ciones					
Aleación de titanio				*•				rte estal ıg: F:Afil				#:Corte inest	able
			Recubri	miento	Metal [Ouro	1101111	ig. i .Aiii	.uuo L	.rtcuorit			
Referencia	Clase	Honing	LC15TF	MP9120	MT2010	TF15	L	INSL	S	BS	RE	Forma	Geometría
XDGX175004PDFR-GL	G	F	*			•	23.0	17.5	5	1.7	0.4		
XDGX175008PDFR-GL	G	F	*			•	23.0	17.5	5	1.3	0.8	•	
XDGX175012PDFR-GL	G	F	*			*	23.0	17.5	5	0.9	1.2		
XDGX175016PDFR-GL	G	F	*			•	22.0	17.5	5	1.4	1.6		
XDGX175020PDFR-GL	G	F	*			•	22.0	17.5	5	1.0	2.0	1000	
XDGX175024PDFR-GL	G	F	*			*	22.0	17.5	5	0.6	2.4	12.3	
XDGX175030PDFR-GL	G	F	*			•	21.1	17.5	5	0.8	3.0		
XDGX175032PDFR-GL	G	F	*			*	21.1	17.5	5	0.6	3.2		
XDGX175040PDFR-GL	G	F	*			•	20.0	17.5	5	0.8	4.0		
XDGX175050PDFR-GL	G	F	*			•	19.4	17.5	5	0.4	5.0		
XDGX175004PDER-GM	G	Е		•			23.0	17.5	5	1.7	0.4		L
XDGX175008PDER-GM	G	Е		•			23.0	17.5	5	1.3	0.8		
XDGX175012PDER-GM	G	Е		•			23.0	17.5	5	0.9	1.2		ST 1000
XDGX175016PDER-GM	G	Е		•			22.0	17.5	5	1.4	1.6		30°
XDGX175020PDER-GM	G	Е		•			22.0	17.5	5	1.0	2.0	001	We,
XDGX175024PDER-GM	G	Е		•			22.0	17.5	5	0.6	2.4	100	31
XDGX175030PDER-GM	G	Е		•			21.1	17.5	5	0.8	3.0		
XDGX175032PDER-GM	G	E		•			21.1	17.5	5	0.6	3.2		
XDGX175040PDER-GM	G	Е		•			20.0	17.5	5	0.5	4.0		20°
XDGX175050PDER-GM	G	Е		•			19.4	17.5	5	0.4	5.0		→ ³ →
XDGX175004PDFR-GM	G	F			•	•	23.0	17.5	5	1.7	0.4		
XDGX175008PDFR-GM	G	F			•	•	23.0	17.5	5	1.3	0.8		
XDGX175012PDFR-GM	G	F			*	•	23.0	17.5	5	0.9	1.2		
XDGX175016PDFR-GM	G	F			•	•	22.0	17.5	5	1.4	1.6		
XDGX175020PDFR-GM	G	F			•	•	22.0	17.5	5	1.0	2.0	001	
XDGX175024PDFR-GM	G	F			*	•	22.0	17.5	5	0.6	2.4		
XDGX175030PDFR-GM	G	F			•	•	21.1	17.5	5	0.8	3.0		
XDGX175032PDFR-GM	G	F			*	•	21.1	17.5	5	0.6	3.2		
XDGX175040PDFR-GM	G	F			•	•	20.0	17.5	5	0.5	4.0		
XDGX175050PDFR-GM	G	F			•	•	19.4	17.5	5	0.4	5.0		

REPUESTOS

TIPO FRONTAL/TIPO ROSCA/TIPO MANGO Referencia Tornillo roscado Llave Lubricante Placa AXD4000R201SA20SA TS3SBS AXD4000R201SA20SB XDGX1750 TIP0 A TKY08D MK1KS PDOR-OO TS3SB TIPO B AXD4000A TPS3SB

^{*} Par de sujeción (N • m) : TS3SB(S) = 1.5, TPS3SB = 3.0

COMBINACIÓN DE LA HERRAMIENTA Y DE LAS PLACAS CON RADIO

			F	ortaherramie	entas de tipo <i>i</i>	Д			Portaherramientas de tipo B		
				AXD4000- AXD4000R							
Radio de la	R0.4	R0.8	R1.2	R1.6	R2.0	R2.4	R3.0	R3.2	R4.0	R5.0	
placa(RE)	XDGX 1750 <u>04</u> PD\R-\\	XDGX 1750 <u>08</u> PD0R-00	XDGX 1750 <u>12</u> PDR-	XDGX 1750 <u>16</u> PDOR-00	XDGX 1750 <u>20</u> PD\R-\\	XDGX 1750 <u>24</u> PDOR-00	XDGX 1750 <u>30</u> PDOR-	XDGX 1750 <u>32</u> PD\R-\\	XDGX 1750 <u>40</u> PDOR-	XDGX 1750 <u>50P</u> DOR-	

^{1.} No existe compatibilidad alguna entre una placa para portaherramientas de tipo A y de tipo B.

CONDICIONES DE CORTE RECOMENDADAS

										fz		
	Material	Dureza	Calidad		Vc	ae	ар			DC		
								Ø20	Ø25-Ø28	Ø32-Ø35	Ø40	Ø50-Ø125
							<5	<0.05	<0.25	<0.25	<0.25	<0.25
						<0.25 DC	<10	<0.05	<0.2	<0.2	<0.2	<0.2
							<14.5	<0.05	<0.15	<0.15	<0.15	<0.15
							<5	<0.05	<0.25	<0.25	<0.25	<0.25
						<0.5 DC	<10	_	<0.2	<0.2	<0.2	<0.2
	Aleación de	C: .E0/	TF15	GL	1000 (200–3000)		<14.5	_	<0.15	<0.15	<0.15	<0.15
	aluminio (A6061, A7075)	Si<5%	LC15TF				<5	<0.05	<0.25	<0.25	<0.25	<0.25
	,,					<0.75 DC	<10	_	<0.2	<0.2	<0.2	<0.2
							<14.5	_	<0.15	<0.15	<0.15	<0.15
							<5	<0.05	<0.25	<0.25	<0.25	<0.25
						DC	<10	_	_	_	_	_
					1000		<14.5	_	_	_	_	_
				CM.			<5	<0.05	<0.35	<0.35	<0.4	<0.4
						<0.25 DC	<10	<0.05	<0.3	<0.3	<0.35	<0.35
							<14.5	<0.05	<0.25	<0.25	<0.3	<0.3
			TF15			<0.5 DC	<5	<0.05	<0.35	<0.35	<0.35	<0.4
		C: .E0/					<10	_	<0.3	<0.3	<0.3	<0.35
N	Aleación de aluminio						<14.5	_	<0.2	<0.25	<0.25	<0.3
IN	(A6061, A7075)	Si<5%	MP9120	GM	(200–3000)		<5	<0.05	<0.3	<0.3	<0.3	<0.35
	,,					<0.75 DC	<10	_	<0.25	<0.25	<0.25	<0.3
							<14.5	_	<0.2	<0.2	<0.2	<0.25
							<5	<0.05	<0.25	<0.25	<0.3	<0.35
						DC	<10	_	_	_	_	_
							<14.5	_	_	_	_	_
							<5	<0.05	<0.35	<0.35	<0.4	<0.4
						<0.25 DC	<10	<0.05	<0.3	<0.3	<0.35	<0.35
							<14.5	<0.05	<0.25	<0.25	<0.3	<0.3
	Aleación de						<5	<0.05	<0.35	<0.35	<0.35	<0.4
	aluminio					<0.5 DC	<10	_	<0.3	<0.3	<0.3	<0.35
	(AC4B) Aleación de aluminio	5%≼Si≼10%	MP9120	GM	200		<14.5		<0.2	<0.25	<0.25	<0.3
		Si>10%	1-11 / 120	ON	(200–3000)		<5	<0.05	<0.3	<0.3	<0.3	<0.35
						<0.75 DC	<10	_	<0.25	<0.25	<0.25	<0.3
	(ADC12, A390)						<14.5	_	<0.2	<0.2	<0.2	<0.25
							<5	<0.05	<0.25	<0.25	<0.3	<0.35
						DC	<10	_	_	_	_	_
							<14.5	_	_	_	_	_

										fz		
	Material	Dureza	Calidad		Vc	ae	ар			DC		
								Ø20	Ø25-Ø28	Ø32-Ø35	Ø40	Ø50-Ø125
							<5	<0.05	<0.1	<0.1	<0.1	<0.1
						<0.25 DC	<10	<0.05	<0.1	<0.1	<0.1	<0.1
							<14.5	<0.05	<0.1	<0.1	<0.1	<0.1
							<5	<0.05	<0.08	<0.1	<0.1	<0.1
						<0.5 DC	<10	_	<0.08	<0.1	<0.1	<0.1
5	Aleación de titanio		MP9120	GM	40		<14.5	_	<0.08	<0.1	<0.1	<0.1
>	(Ti6Al4V)		MP9120	ΘМ	(30-60)		<5	<0.05	<0.05	<0.08	<0.1	<0.1
						<0.75 DC	<10	_	<0.05	<0.08	<0.1	<0.1
							<14.5	_	<0.05	<0.08	<0.1	<0.1
						-	<5	<0.05	<0.05	<0.05	<0.05	<0.05
						DC	<10	_	_	_	_	_
						•	<14.5	_	_	_	_	_

^{1.} Las condiciones de corte anteriores están determinadas en una máquina y una pieza de trabajo de alta rigidez, donde no se producen vibraciones. Si hay vibración, realice los ajustes necesarios según las condiciones de mecanizado.

Cuando se utiliza un gran voladizo.

Cuando se hace un mecanizado de cajeras en radios.

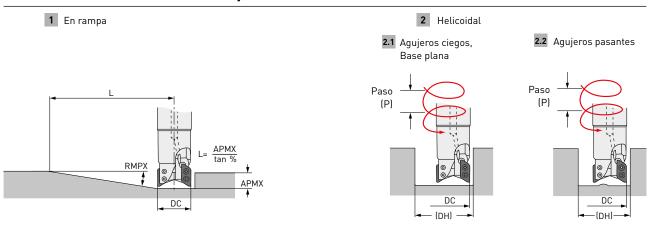
Cuando la pieza tiene poca rigidez de fijación o cuando la rigidez de la pieza o de la máquina sea escasa pueden producirse vibraciones con facilidad, si es así, reduzca condiciones de corte como anchura y profundidad de corte y avance por diente.

AXD4000A

							fz
Material	Dureza	Calidad		Vc	ae	ар	DC
							Ø50
						≤ 5	≤ 0.35
					≤0.5 D1	≤10	≤ 0.30
		MT2010				≤14.5	≤ 0.25
		TF15	GM	4000 (200–5000)		≤ 5	≤ 0.30
Aleación de aluminio		MP9120		(200–3000)	≤0.75 D1	≤10	≤ 0.25
(A7050, A7075,	Si<5%				-	≤14.5	≤ 0.20
A2024, A6061)				-	D1	≤ 5	≤ 0.30
						≤ 5	≤ 0.20
		TF15	01	4000	≤0.75 D1	≤10	≤ 0.15
		LC15TF	GL	(200-5000)	-	≤14.5	≤ 0.10
				-	D1	≤ 5	≤ 0.20

Las condiciones de corte anteriores se determinan en función de los materiales de la pieza de trabajo y de la rigidez de la máquina, donde no se producen vibraciones. Si se producen vibraciones realice los ajustes acorde a las condiciones de mecanizado.

Cuando se utiliza una herramienta con voladizo largo.


Cuando se hace un mecanizado de radios de cajeras.

Cuando los materiales de la pieza tienen poca rigidez de sujeción o cuando la rigidez de la máquina o el material de la pieza es baja, las vibraciones pueden aparecer fácilmente, si es así, reduzca las condiciones de corte así como el ancho y la profundidad de corte y el avance por diente.

^{2.} Observe que pueden producirse vibraciones en las siguientes condiciones.

 $^{2. \} Las\ vibraciones\ pueden\ producirse\ en\ las\ siguientes\ condiciones.$

FRESADO EN RAMPA/HELICOIDAL

	D F	1			2.		2.2		
DC	RE —	RMPX	L*1	DH max.	P max.	DH min.	P max.	DH min.	P max.
TIPO A									
	0.4-1.2	20.7	42	37.1 *2	14	36.1	14	22	2
20	1.6-2.4	19.9	43	34.7 *3	13	34.6	13	22	2
	3.0-3.2	18.9	46	33.1 *4	12	33.3	12	22	1
	0.4-1.2	23.1	37	47.1 *2	14	46	14	32	8
25	1.6-2.4	22.0	39	44.7 *3	13	44.4	13	32	8
	3.0-3.2	18.7	46	43.1 *4	12	43	12	32	7
	0.4-1.2	19.2	45	53.1 *2	14	52	14	36	8
28	1.6-2.4	18.5	47	50.7 *3	13	50.4	13	36	8
	3.0-3.2	16.7	52	49.1 *4	12	48.9	12	36	7
	0.4-1.2	15.4	57	61.1 *2	14	59.9	14	46	11
32	1.6-2.4	14.7	60	58.7 * ³	13	58.3	13	46	11
	3.0-3.2	13.8	64	57.1 * ⁴	12	56.8	12	46	10
	0.4-1.2	13.4	66	67.1 *2	14	65.8	14	50	11
35	1.6-2.4	12.7	69	64.7 *3	13	64.3	13	50	10
	3.0-3.2	11.8	75	63.1 *4	12	62.8	12	50	9
	0.4-1.2	11.1	80	76.7 *2	14	75.9	14	62	13
40	1.6-2.4	10.4	85	74.3 *3	13	74.2	13	62	12
	3.0-3.2	9.7	91	72.7 *4	12	72.7	12	62	11
	0.4-1.2	8.2	108	96.7 *2	14	95.6	14	81	14
50	1.6-2.4	7.6	117	94.3 *3	13	94	13	81	13
	3.0-3.2	6.9	129	92.7 *4	12	92.4	12	81	11
	0.4-1.2	6.1	146	122.7 *2	14	121.6	14	107	14
63	1.6-2.4	5.6	159	120.3 *3	13	119.9	13	107	13
	3.0-3.2	5.2	171	118.7 *4	12	118.4	12	107	12
	0.4-1.2	4.6	193	156.7 *2	14	155.6	14	141	14
80	1.6-2.4	4.2	212	154.3 *3	13	153.9	13	141	13
	3.0-3.2	3.8	234	152.7 *4	12	152.4	12	141	12
	0.4-1.2	3.5	254	196.7 *2	14	195.5	14	181	14
100	1.6-2.4	3.2	278	194.3 *3	13	193.9	13	181	13
	3.0-3.2	2.9	306	192.7 *4	12	192.3	12	181	12
	0.4-1.2	2.7	329	246.7 *2	14	245.5	14	231	14
125	1.6-2.4	2.5	356	244.3 *3	13	243.8	13	231	13
	3.0-3.2	2.3	386	242.7 *4	12	242.3	12	231	12

D.C.	D.F.	1			2.	.1		2.2		
DC	RE -	RMPX	L*1	DH max.	P max.	DH min.	P max.	DH min.	P max.	
IPO B										
20 -	4	17.5	47	31.5	10	31.8	10	22	1	
20	5	16.6	71	29.5	6	31.1	7	22	1	
25 -	4	15.1	55	41.5	10	41.4	10	32	5	
25 -	5	13.7	61	39.5	9	40.6	9	32	5	
28 -	4	14.1	59	47.5	10	47.2	10	36	6	
20 -	5	13	65	45.5	9	46.4	9	36	5	
32 -	4	12.7	66	55.5	10	55.1	10	46	9	
32 -	5	12	70	53.5	9	54.3	9	46	8	
35 -	4	10.8	78	61.5	10	61	10	50	8	
35 -	5	10.2	83	59.5	9	60.2	9	50	8	
/0	4	8.8	96	71.1	10	70.9	10	62	10	
40 -	5	8.2	103	69.1	9	70.1	9	62	9	
FO	4	6.3	135	91.1	10	90.6	10	81	10	
50 -	5	5.8	146	89.1	9	89.8	9	81	9	
/2	4	4.6	184	117.1	10	116.6	10	107	10	
63 -	5	4.2	202	115.1	9	115.7	9	107	9	
00	4	3.4	250	151.1	10	150.5	10	141	10	
80 -	5	3.1	274	149.1	9	149.6	9	141	9	
100	4	2.6	326	191.1	10	190.5	10	181	10	
100 -	5	2.4	354	189.1	9	189.6	9	181	9	
105	4	2	424	241.1	10	240.5	10	231	10	
125 -	5	1.8	471	239.1	9	239.6	9	231	9	

^{1.} El avance en rampa recomendado es de 0.05 mm/diente o menos.

MÁXIMA PROFUNDIDAD DE TALADRADO

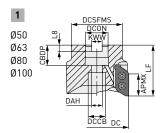
		DC DC							
	RE	Ø20	Ø25	Ø28	Ø32	Ø35	Ø40-Ø125		
	0.4	5.3	5.2	5.2	5.2	5.3	5.3		
	0.8	5.3	5.2	5.2	5.2	5.3	5.3		
	1.2	5.3	5.2	5.2	5.2	5.3	5.3		
T: A	1.6	4.8	4.6	4.7	4.7	4.9	4.8		
Tipo A -	2.0	4.8	4.6	4.7	4.7	4.9	4.8		
•	2.4	4.8	4.6	4.7	4.7	4.9	4.8		
	3.0	4.3	3.7	4.2	4.2	4.4	4.4		
-	3.2	4.3	3.7	4.2	4.2	4.4	4.4		
Tine D	4.0	3.7	2.7	3.7	3.6	3.8	3.8		
Tipo B	5.0	3.4	2.3	3.3	3.3	3.5	3.5		

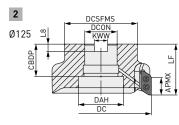
^{*1} Con el ángulo de rampa máximo, la distancia para alcanzar la máxima profundidad de corte es la siguiente:
L= (máxima profundidad de corte APMX/tan %). La profundidad de corte máxima de tipo A es 15.5 mm y de tipo B, 14.8 mm.

^{*2} Radio de borde de 1.2 mm. Para otros radios, utilice la siguiente fórmula. {(DC)-{RE}-0.25}×2

^{*3} Radio de borde de 2.4 mm. Para otros radios, utilice la siguiente fórmula. $\{[DC]-\{RE\}-0.25\}\times 2$

^{*4} Radio de borde de 3.2 mm. Para otros radios, utilice la siguiente fórmula. {(DC)-{RE}-0.25}×2




TIPO FRONTAL

C H: 0° A.R: +11° R.R: +26°-+29°

T: +26°-+29° I : +11°

Solo herramientas a mano derecha.

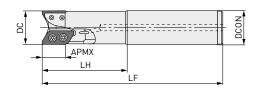
DC	Tornillo de fijación		Geon	netría
Ø50, Ø63	HSC10030H		1	2
Ø80	HSC12035H	1		<u> </u>
Ø100	HSC16040H		 ₩	
Ø125	MBA20040H	2	Ш	4

Referencia	Stock	APMX	DC	DCON	LF	RPMX	WT	ZEFP	Tipo	RE
TIPO A										
AXD7000-050A03RA	•	21	50	22	50	30000	0.4	3	1	
AXD7000-063A03RA	•	21	63	22	50	25000	0.5	3	1	
AXD7000-080A04RA	•	21	80	27	63	23000	1.2	4	1	XDGX2270 PDFR-GL
AXD7000-100A05RA	•	21	100	32	63	19000	1.8	5	1	FDI K-OL
AXD7000-125B06RA	•	21	125	40	63	16000	2.7	6	2	
TIPO B										
AXD7000-050A03RB	•	20.4	50	22	50	30000	0.4	3	1	
AXD7000-063A03RB	•	20.4	63	22	50	25000	0.5	3	1	
AXD7000-080A04RB	•	20.4	80	27	63	23000	1.2	4	1	XDGX2270 PDFR-GL
AXD7000-100A05RB	•	20.4	100	32	63	19000	1.8	5	1	I DI N-OL
AXD7000-125B06RB	•	20.4	125	40	63	16000	2.7	6	2	

- 1. Para garantizar la estabilidad de la herramienta y de las placas, se han de ajustar al máximo las revoluciones permitidas.
- 2. Cuando utilice la herramienta a velocidades de husillo elevadas, compruebe que el equilibrio entre la misma y el eje es
- 3. Para placas con radio angular de 1.6 o superior, a medida que aumenta el radio angular las dimensiones LF y LH disminuyen.

DIMENSIONES DE HERRAMIENTA

Referencia	CBDP	DAH	DCCB	DCSFMS	KWW	L8
TIPO A						
AXD7000-050A03RA	20	11	17	45	10.4	6.3
AXD7000-063A03RA	20	11	17	50	10.4	6.3
AXD7000-080A04RA	23	13	20	63	12.4	7
AXD7000-100A05RA	26	17	26	70	14.4	8
AXD7000-125B06RA	40	56	_	90	16.4	9
TIPO B						
AXD7000-050A03RB	20	11	17	45	10.4	6.3
AXD7000-063A03RB	20	11	17	50	10.4	6.3
AXD7000-080A04RB	23	13	20	63	12.4	7
AXD7000-100A05RB	26	17	26	70	14.4	8
AXD7000-125B06RB	40	56	_	90	16.4	9


TIPO MANGO

Solo herramientas a mano derecha.

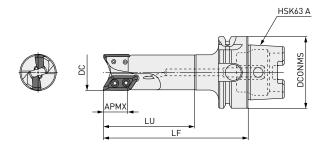
Referencia	Stock	АРМХ	DC	DCON	LF	LH	RPMX	ZEFP	RE
TIPO A									
AXD7000R322SA32SA	•	21	32	32	170	80	41000	2	0.8-3.2
AXD7000R402SA42SA	•	21	40	42	170	80	36000	2	0.6-3.2
TIPO B									
AXD7000R322SA32SB	•	20.4	32	32	170	80	41000	2	/ O E O
AXD7000R402SA42SB	•	20.4	40	42	170	80	36000	2	4.0-5.0

^{1.} Para garantizar la estabilidad de la herramienta y de las placas, se han de ajustar al máximo las revoluciones permitidas.

^{2.} Cuando utilice la herramienta a velocidades de husillo elevadas, compruebe que el equilibrio entre la misma y el eje es

²² Vc

^{3.} Para placas con radio angular de 3.0 o superior, a medida que aumenta el radio angular las dimensiones LF y LH disminuyen.



TIPO MANGO HSK63A

Solo herramientas a mano derecha.

Referencia	Stock	АРМХ	DC	DCONMS	LF	LU	RPMX	ZEFP	RE
TIPO A									
AXD7000R03202A-H63A	•	21	32	63	127	80	41000	2	
AXD7000R04002A-H63A	•	21	40	63	132	85	36000	2	0.8-3.2
AXD7000R05003A-H63A	•	21	50	63	137	90	30000	3	

^{1.} Para garantizar la estabilidad de la herramienta y de la placa, se han de ajustar al máximo las velocidades de husillo

- 2. Cuando utilice la herramienta a velocidades de husillo elevadas, compruebe que el equilibrio entre la misma y el eje es
- 3. Para placas con radio angular de 3.0 o superior, a medida que aumenta el radio angular las dimensiones LF y LU disminuyen.
- 4. No hay agujero para virutas.

REPUESTOS

TIPO FRONTAL/TIPO MANGO/TIPO MANGO HSK63A

Referencia	*			
	Tornillo roscado	Llave	Lubricante	Placa
AXD7000R322SA32SA/B	TS4SB			
AXD7000R03202A-H63A	13430			
AXD7000R402SA42SA/B		TKY15D	MK1KS	XDGX2270
AXD7000-CCCRA/RB	TS4SBL	ואווטט	MKIKS	PDFR-GL
AXD7000R04002A-H63A	1545BL			
AXD7000R05003A-H63A				

* Par de sujeción (N • m) : TS4SB(L)=3.5

PLACAS

N	Aleación de aluminio	Honing: F:Afil					de corte: ble €:Corte general \$:Corte inestable ado E:Redondo					
				Recubrimiento	Metal Duro	_						
	Referencia	Clase	Honing	LC15TF	TF15	L	INSL	S	BS	RE	Forma	Geometría
	XDGX227008PDFR-GL	G	F	*	•	30	22.5	7	2.0	0.8		
	XDGX227016PDFR-GL	G	F	*	•	30	22.5	7	1.2	1.6		L RE
	XDGX227020PDFR-GL	G	F	*	•	30	22.5	7	0.8	2.0		SI A
	XDGX227030PDFR-GL	G	F	*	•	28.8	22.5	7	0.8	3.0	AR A	20°
	XDGX227032PDFR-GL	G	F	*	•	28.8	22.5	7	0.6	3.2		NS()
	XDGX227040PDFR-GL	G	F	*	•	27.5	22.5	7	0.9	4.0		~
	XDGX227050PDFR-GL	G	F	*	•	27	22.5	7	0.4	5.0		

COMBINACIÓN DE LA HERRAMIENTA Y DE LAS PLACAS CON RADIO

		Porta	aherramientas de t	ipo A		Portaherrami	entas de tipo B
Radio de la	R0.8	R1.6	R2.0	R3.0	R3.2	R4.0	R5.0
placa(RE)	XDGX 2270 <u>08</u> PDFR-GL	XDGX 2270 <u>16</u> PDFR-GL	XDGX 2270 <u>32</u> PDFR-GL	XDGX 2270 <u>40</u> PDFR-GL	XDGX 2270 <u>50</u> PDFR-GI		

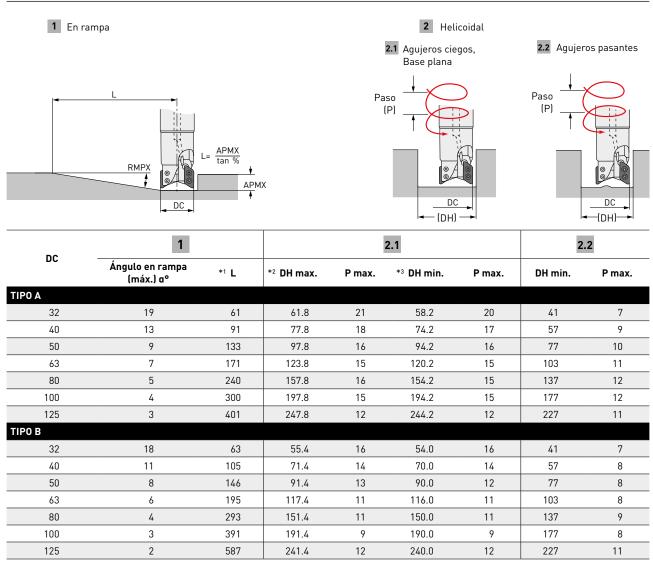
^{1.} No existe compatibilidad alguna entre una placa para portaherramientas de tipo A y de tipo B.

● : Stock Europa. ★ : Stock Japón.

CONDICIONES DE CORTE RECOMENDADAS

						fz				
Material de trabajo	Calidad		Vc	ae	ар		DC	-		
					_	Ø32	Ø40	Ø50-Ø125		
					<5	<0.35	<0.40	<0.40		
				<0.25 DC -	5–10	<0.30	<0.35	<0.35		
					10–15	<0.25	<0.30	<0.30		
					15–20	<0.20	<0.25	<0.25		
				<0.5 DC -	<5	<0.35	<0.35	<0.40		
					5–10	<0.30	<0.30	<0.35		
					10-15	<0.25	<0.25	<0.30		
Aleación de	LC15TF	GL	1000 (200–3000)		15–20	<0.20	<0.20	<0.25		
aluminio	TF15	GL	1000 (200–3000)		<5	<0.30	<0.30	<0.35		
				.0.7E.DO	5–10	<0.25	<0.25	<0.30		
				<0.75 DC	10-15	<0.20	<0.20	<0.25		
					15–20	<0.15	<0.15	<0.20		
					<5	<0.25	<0.30	<0.35		
				.DC	5–10	<0.20	<0.25	<0.30		
				<dc< td=""><td>10-15</td><td><0.15</td><td><0.20</td><td><0.25</td></dc<>	10-15	<0.15	<0.20	<0.25		
						<0.10	<0.15	<0.20		

^{1.} Las condiciones de corte anteriores están determinadas en una máquina y una pieza de trabajo de alta rigidez, donde no se producen vibraciones. Si hay vibración, realice los ajustes necesarios según las condiciones de mecanizado.


^{2.} Observe que pueden producirse vibraciones en las siguientes condiciones.

Cuando se utiliza un gran voladizo.

Cuando se hace un mecanizado de cajeras en radios.

Cuando la pieza tiene poca rigidez de fijación o cuando la rigidez de la pieza o de la máquina sea escasa pueden producirse vibraciones con facilidad, si es así, reduzca condiciones de corte como anchura y profundidad de corte y avance por diente.

FRESADO EN RAMPA / HELICOIDAL

^{1.} El avance en rampa recomendado es de 0.05 mm/diente o menos.

{(DC)-(RE)-0.3}×2

Para otros radios, utilice la siguiente fórmula.

{(DC)-(RE)-(BS)-0.1)}×2

MÁXIMA PROFUNDIDAD DE TALADRADO

		RE	Máxima prof. de taladrado (mm)
Tipo A 0.8–3.2 5	Tipo A	0.8-3.2	5
Tipo B 4.0–5.0 4	Tipo B	4.0-5.0	4

^{*1} Con el ángulo de rampa máximo, la distancia para alcanzar la máxima profundidad de corte es la siguiente:

L= (máxima profundidad de corte APMX/tan %). La profundidad de corte máxima de tipo A es 21 mm y de tipo B, 20.4 mm.

^{*2} Diámetro máximo cuando se mecaniza un agujero ciego con superficie plana y un radio de 0.8 mm para tipo A y 4 mm para tipo B.

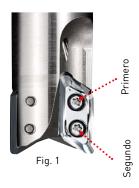
Para otros radios, utilice la siguiente fórmula.

^{*3} Diámetro mínimo cuando se mecaniza un agujero ciego con superficie plana y un radio de 0.8 mm para tipo A y 4 mm para tipo B.

PRECAUCIÓN

GUÍA OPERACIONAL

- 1. Utilice un chorro de aire o un cepillo para limpiar las bases de las placas antes de colocarlas.
- 2. Sujetando las placas con firmeza contra su base, apriete los tornillos de fijación con la llave que se suministra.
- 3. Apriete los tornillos de fijación por orden, como se indica en la Figura 1.
- 4. Aplique lubricante en los tornillos de fijación y apriételos con el par especificado.


El par especificado es el siguiente.

AXD7000 3.5 N•m (2.58ft•lb) AXD4000 1.5 N•m (1.11ft•lb) AXD4000A 3.0 N•m (2.11ft•lb)

5. Los tornillos de fijación son piezas importantes desde el punto de vista de seguridad. Utilice la referencia correcta de tornillos de fijación: Si la velocidad del husillo es igual o superior a los valores de la Tabla 2, se recomienda cambiar los tornillos de fijación por unos nuevos cuando se cambien las placas.

ipo AXD4	Tipo A	4000	IXA		
DC Ø20	DC Ø20	Ø25-Ø125	Ø32	Ø40-Ø125	
ngitud TS3SBS	ongitud TS3SBS	TS3SB	TS4SB	TS4SBL	-
fijación L(mm) 6.5	e fijación L(mm) 6.5	8	9	10.5	- 8

6. Compruebe que no hay espacios entre la placa y la base antes de empezar.

TÉCNICA PARA COLOCAR LA FRESA EN EL EJE

- 1. Antes de colocar la fresa en el eje, limpie la base y el extremo de la fresa y el extremo del eje.
- 2. Coloque la fresa sobre el eje y apriete el tornillo de acople que se suministra. Consulte el par de apriete en la tabla que aparece a continuación.
- 3. El tornillo de acople que se suministra con el AXD es un tornillo especial para refrigeración interna. Es importante que no lo pierda.

AXD4000

Tornillo de fijación	(Nm)	DC		Geometría
HFF08043H	11	Ø40	1	1 2 3
HSC10030H	40	Ø50, Ø63	2	
HSC12035H	80	Ø80	2	
HSC16040H	150	Ø100	2	
MBA20040H	320	Ø120	3	

AXD7000

Tornillo de fijación	(Nm)	DC		Geometría
HSC10030H	40	Ø50, Ø63	1	1 2
HSC12035H	80	Ø80	1	
HSC16040H	150	Ø100	1	
MBA20040H	320	Ø120	2	

AXD4000/AXD7000

(TABLA 1) REVOLUCIONES MÁXIMAS PERMITIDAS

AXD4000

DC	Ø25	Ø32	Ø40	Ø50	Ø63	Ø80	Ø100	Ø125
RPMX	49000	48000	41000	35000	30000	27000	23000	20000

AXD7000

DC	Ø32	Ø40	Ø50	Ø63	Ø80	Ø100	Ø125
RPMX	41000	36000	30000	25000	23000	19000	16000

Incluso cuando se trabaja desde la velocidad máxima permitida del husillo, si la velocidad de corte del cabezal es igual o superior a los valores mostrados en la tabla 2, se recomienda que la calidad de equilibrado (del eje o del amarre) se ajuste a G6.3 según la norma ISO 1940.

También se recomienda cambiar los tornillos de fijación por tornillos nuevos cuando se cambian las placas. Además debe garantizar que utiliza maquinaria que disponga de medidas de seguridad en caso de rotura de la fresa. (Nota) La calidad de equilibrado del portaherramientas (sin placas ni tornillos de fijación) es G6.3 o superior a 10000 min⁻¹.

(TABLA 2) REVOLUCIONES MÁXIMAS CUANDO EL EQUILIBRADO ENTRE EL EJE Ó EL CONO DE AMARRE NO SE CONSIGUEN

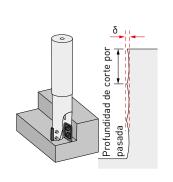
AXD4000

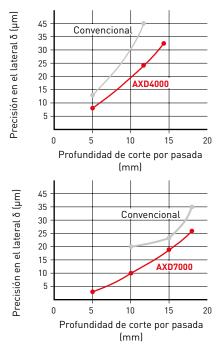
DC	Ø25	Ø32	Ø40	Ø50	Ø63	Ø80	Ø100	Ø125
RPMX	12000	9500	7600	6000	4800	3800	3000	2400

AXD7000

DC	Ø32	Ø40	Ø50	Ø63	Ø80	Ø100	Ø125
RPMX	9500	7600	6000	4800	3800	3000	2400

Al configurar la velocidad de husillo, tenga en cuenta la velocidad de husillo máxima permitida del eje o el amarre de fresado. Utilice el tornillo de fijación especificado cuando utilice el tipo de eje con agujero de refrigeración. Las placas tienen filos de corte afilados y manipularlas con las manos puede causar heridas. Utilice guantes de protección cuando manipule placas intercambiables.

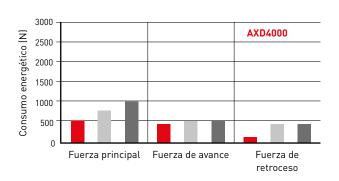

DATOS TÉCNICOS


EXCELENTE ACABADO VERTICAL

Placas de calidad G y diseño especial con filo de corte helicoidal para una excelente acabado vertical.

Herramienta	AXD4000R403SA42SA
Placa	XDGX175008PDFR-GL
Calidad	TF15
Material	7075
Vc (m/min)	1000
fz (mm/diente)	0.2
ae (mm)	3
Tipo de corte	Corte refrigerado

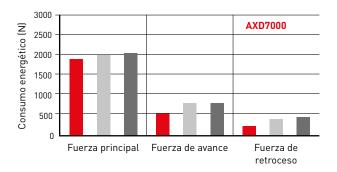
Herramienta	AXD7000R402SA42SA
Placa	XDGX227008PDFR-GL
Calidad	TF15
Material	7075
Vc (m/min)	2500
fz (mm/diente)	0.2
ae (mm)	3
Tipo de corte	Corte refrigerado



PLACAS DE BAJA RESISTENCIA

La cara de incidencia helicoidal optimizada y el ángulo de incidencia ofrecen resistencia del filo de corte y un gran ángulo de incidencia para reducir la resistencia al corte. Además se incorpora un filo de corte convexo para garantizar el flujo efectivo de las virutas.

Herramienta	AXD4000-050A04RA
Placa (Diente único)	XDGX175008PDFR-GL
Calidad	TF15
Material	7075
Vc (m/min)	1000
fz (mm/diente)	0.2
ae (mm)	25
ap (mm)	10
Tipo de corte	Corte refrigerado


AXD4000/AXD7000

PLACAS DE BAJA RESISTENCIA

Herramienta	AXD7000-050A03RA
Placa (Diente único)	XDGX227008PDFR-GL
Calidad	TF15
Material	7075
Vc (m/min)	1000
fz (mm/diente)	0.2
ae (mm)	25
ap (mm)	10
Tipo de corte	Corte refrigerado

Herramienta	AXD4000-050A04RA
Placa (Diente único)	XDGX175004PDER-GM
Material	7075
Vc (m/min)	1000
fz (mm/diente)	0.15
ae (mm)	30
ap (mm)	0.5
Tipo de corte	Refrigerante interno

Herramienta	AXD4000-050A04RA
Placa (Diente único)	XDGX175004PDER-GM
Calidad	MP9120
Material	Ti-6Al-4V
Vc (m/min)	30
fz (mm/diente)	0.1
ae (mm)	40
ap (mm)	2
Tipo de corte	Refrigerante interno/externo

AXD4000-GM

Ra 0.120 μm Rz 1.132 μm

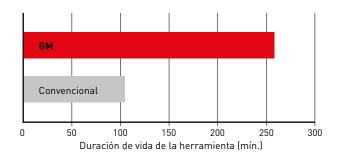
Ra 0.675 μm Rz 3.725 μm

Hta. convencional

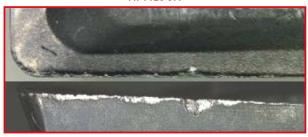
Rendimiento de corte en fresado Ti6Al4V

AXD4000-GM(MP9120)

Tras 0.8 m de mecanizado


Tras 0.4 m de mecanizado

RESULTADOS DE CORTE


FUNDICIÓN DE ALEACIÓN DE ALUMINIO: CONTENIDO DE SI 9%

Duración de vida 2.3 veces mayor gracias al filo de corte más resistente y al recubrimiento de PVD

Herramienta	AXD4000-040A02RA
Placa (Diente único)	XDGX175008PDER-GM
Material	Fundición de aleación de aluminio: Contenido de SI 9%
Vc (m/min)	960
fz (mm/diente)	0.1
ae (mm)	33
ap (mm)	6.0
Tipo de corte	Corte refrigerado

MP9120 GM

Hta. convencional

MITSUBISHI MATERIALS CORPORATION

GERMANY

MMC HARTMETALL GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone + 49 2159 91890 . Fax + 49 2159 918966

Email admin@mmchq.de

MMC HARDMETAL U.K. LTD.

Mitsubishi House . Galena Close . Tamworth . Staffs. B77 4AS

Phone + 44 1827 312312

Email sales@mitsubishicarbide.co.uk

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2 . 46136 Museros/Valencia Phone +34 96 1441711 . Fax +34 96 1443786

Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone +33 1 69 35 53 53 . Fax +33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw

Phone + 48 71335 1620 . Fax + 48 71335 1621 Email sales@mitsubishicarbide.com.pl

ITALY

MMC ITALIA S.R.L.

Viale Certosa 144 . 20156 Milano

Phone +39 0293 77031 . Fax +39 0293 589093

Email info@mmc-italia.it

MMC HARTMETALL GMBH ALMANYA - İZMİR MERKEZ ŞUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35530 Bayraklı/İzmir

Phone + 90 232 5015000 . Fax + 90 232 5015007

Email info@mmchg.com.tr

www.mitsubishicarbide.com | www.mmc-hardmetal.com

DISTRIBUIDO POR:

Referencia: B116S Publicado: 2023.04 (0). Impreso en Alemania